Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene

Simanke, Adriane Gomes; Azeredo, Ana Paula de; Lemos, Cristóvão de; Mauler, Raquel Santos

Downloads: 0
Views: 718


The influence of three nucleating agents from different generations on the crystallization behavior of propylene homopolymer was studied by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The amount of nucleating agent used varied between 1000 and 2200 ppm. The new generation nucleating agent, Hyperform® HPN-68L, accelerates the crystallization more efficiently than the other nucleating agents tested. It was also possible to verify the effects of agglomeration and negative interaction between calcium stearate and sodium benzoate. Furthermore, AFM images allowed to differentiate the crystals generated by Millad® 3988 through the observation of a fibrillar intertwining network structure, with characteristic spacing and length of crystals, justifying its excellent performance to improve polypropylene optical properties.


AFM, crystallization kinetics, morphology, nucleating agent, polypropylene.


1. Mubarak, Y., Harkin-Jones, E., Martin, P. J., & Ahmad, M. (1999). Crystallization of isotactic polypropylene: pigment, nucleating agent and recycling effects. In Proceedings of 57° SPE ANTEC (pp. 3796-3800). New York: SPE.

2. Wang, K., Mai, K., & Zeng, H. (2000). Isothermal crystallization behavior and melting characteristics of injection sample of nucleated polypropylene. Journal of Applied Polymer Science, 78(14), 2547-2553. http://dx.doi.org/10.1002/1097-4628(20001227)78:14<2547::AID-APP160>3.0.CO;2-F.

3. Menyhárd, A., Gahleitner, M., Varga, J., Bernreitner, K., Jääskeläinen, P., Øys, H., & Pukánszky, B. (2009). The influence of nucleus density on optical properties in nucleated isotactic polypropylene. European Polymer Journal, 45(11), 3138-3148. http://dx.doi.org/10.1016/j.eurpolymj.2009.08.006.

4. Marco, C., Ellis, G., Gomez, M. A., & Arribas, J. M. (2003). Analysis of the isothermal crystallization of isotactic polypropylene nucleated with sorbitol derivatives. Journal of Applied Polymer Science, 88(9), 2261-2274. http://dx.doi.org/10.1002/app.11935.

5. Binsbergen, F. L., & Lange, B. G. M. (1970). Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer, 11(6), 309-332. http://dx.doi.org/10.1016/0032-3861(70)90071-6.

6. Hay, J. N. (1971). Application of the modified avrami equations to polymer crystallisation kinetics. Polymer Journal, 3(2), 74-82. http://dx.doi.org/10.1002/pi.4980030205.

7. Supaphol, P. (2001). Application of the Avrami, Tobin, Malkin, and Urbanovici-Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochimica Acta, 370(1-2), 37-48. http://dx.doi.org/10.1016/S0040-6031(00)00767-X.

8. Zhuomin, D., & Spruiell, J. E. (1997). Interpretation of the nonisothermal crystallization kinetics of polypropylene using a power law nucleation rate function. Journal of Polymer Science. Part B, Polymer Physics, 35(7), 1077-1093. http://dx.doi.org/10.1002/(SICI)1099-0488(199705)35:7<1077::AID-POLB7>3.0.CO;2-T.

9. Li, C. C., Zhang, D., & Li, Z. Y. (2002). The effects of alkaline earth dehydroabietate on the crystallization process of polypropylene. Journal of Applied Polymer Science, 85(13), 2644-2651. http://dx.doi.org/10.1002/app.10545.

10. Zhao, X. E., & Dotson, D. L. (2002). US Patent No. 6465551 B1. Alexandria, Virginia: USPTO.

11. Jang, G. S., Cho, W. J., & Ha, C. S. (2001). Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. Journal of Polymer Science. Part B, Polymer Physics, 39(10), 1001-1016. http://dx.doi.org/10.1002/polb.1077.

12. Libster, D., Aserin, A., & Garti, N. (2006). A novel dispersion method comprising a nucleating agent solubilized in a microemulsion, in polymer matrix. I. Dispersion method and polymer characterization. Journal of Colloid and Interface Science, 299(1), 172-181. http://dx.doi.org/10.1016/j.jcis.2006.01.064. PMid:16554065.

13. Botkin, J. H., Dunski, N., & Maeder, D. (2002). Improving molding productivity and enhancing mechanical properties of polypropylene with nucleating agents. Kwinana: Ciba Speciality Chemicals.

14. Santamaria, E., Phan, H. D., & Killough, L. (2008). Clarified polypropylene – old technology vs. new chemistry. In SPE Polyolefins 2008 Proceedings (pp. 1686-1692). Houston: SPE.

15. Wang, K., Zhou, C., Tang, C., Zhang, Q., Du, R., Fu, Q., & Li, L. (2009). Rheologically determined negative influence of increasing nucleating agent content on the crystallization of isotactic polypropylene. Polymer, 50(2), 696-706. http://dx.doi.org/10.1016/j.polymer.2008.11.019.

16. Hobbs, J. K. (2003). In-situ AFM of polymer crystallization. Chinese Journal of Polymer Science, 21(2), 129-133.

17. Tenma, M., & Yamaguchi, M. (2007). Structure and properties of injection-molded polypropylene with sorbitol-based clarifier. Polymer Engineering and Science, 47(9), 1441-1446. http://dx.doi.org/10.1002/pen.20839.

18. Nogales, A., Mitchell, G. R., & Vaughan, A. S. (2003). Anisotropic crystallization in polypropylene induced by deformation of a nucleating agent network. Macromolecules, 36(13), 4898-4906. http://dx.doi.org/10.1021/ma0343028.

19. Kurja, J., & Mehl, N. A. (2001). Plastics additives handbook. Munich: Hanser.

20. Dieckmann, D. (2001). Effect of various acid-neutralizers on the crystallization temperature of nucleated polypropylene. Journal of Vinyl and Additive Technology, 7(1), 51-55. http://dx.doi.org/10.1002/vnl.10264.
588371d57f8c9d0a0c8b4aa6 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections