Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2044
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Improving the thermal properties of fluoroelastomer (Viton GF-600S) using acidic surface modified carbon nanotube

Heidarian, Javad; Hassan, Aziz; Rahman, Nor Mas Mira Abd

Downloads: 0
Views: 274

Abstract

Acid surface modified carbon nanotube (MCNT)-, Carbon nanotube (CNT)-filled fluoroelastomer (FE) and unfilled-FE were prepared (MCNT/FE, CNT/FE and FE). The compounds were subjected to thermogravimetric analysis (TGA) and heat air aging, and characterized by Energy Dispersive X-Ray (EDX). Results showed that MCNT improved the thermal properties of FE, resulting in a larger amount of FE and char remaining in the temperature range of 400-900 °C relative to unfilled FE and CNT/FE. The MCNT/FE TGA curve shifted towards higher temperatures compared to CNT/FE and FE. The same results also revealed that higher percentages of FE were undegraded or less degraded especially near MCNT in the temperature range of 400-540 °C. Energy Dispersive X-Ray (EDX) results indicated that the percentage of carbon and fluorine in the residue of TGA scans, up to 560 °C, of MCNT/FE were the same as CNT/FE, and were higher than FE. EDX results of TGA residue (run up to 900 °C) showed that most of the undegraded FE, which was not degraded at temperatures below 560 °C, was degraded from 560 °C to 900 °C in both MCNT/FE and CNT/FE, with the char in MCNT/FE being more than that in CNT/FE. EDX analysis of thermal aged specimens under air showed that, with increasing aging time, a greater percentage of C, O and F was lost from the surface of filler/FE and FE. The order of element loss after 24 hour aging time was: MCNT/FE > FE > CNT/FE.

Keywords

nanocomposites, fluoroelastomer, acidic surface modified, carbon nanotube, thermal properties, thermal aging.

References

1. PSP Global. Comparison of general use and high performance grades of Viton. Colorado. Technical Data Sheet. Retrieved in 14 January 2015, from http://www.pspglobal.com/nfVitongrades.html.

2. Fuller, R. E. (2006). Advanced polymer architecture sealing solutions for oil and gas applications. Sealing Technology, 2006(9), 6-11. http://dx.doi.org/10.1016/S1350-4789(06)71356-3.

3. Endo, M., Noguchi, T., Ito, M., Takeuchi, K., Hayashi, T., Kim, Y. A., Wanibuchi, T., Jinnai, H., Terrones, M., & Dresselhaus, M. S. (2008). Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Advanced Functional Materials, 18(21), 3403-3409. http://dx.doi.org/10.1002/adfm.200801136.

4. Pham, T. T., Sridhar, V., & Kim, J. K. (2009). Fluoroelastomer‐MWNT nanocomposites‐1: Dispersion, morphology, physico‐mechanical, and thermal properties. Polymer Composites, 30(2), 121-130. http://dx.doi.org/10.1002/pc.20521.

5. Ito, M., Noguchi, T., Ueki, H., Takeuchi, K., & Endo, M. (2011). Carbon nanotube enables quantum leap in oil recovery. Materials Research Bulletin, 46(9), 1480-1484. http://dx.doi.org/10.1016/j.materresbull.2011.04.028.

6. He, L., Xu, Q., Hua, C., & Song, R. (2010). Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polymer Composites, 31(5), 921-927. http://dx.doi.org/10.1002/pc.20876.

7. Chae, D. W., & Hong, S. M. (2011). Rheology, crystallization behavior under shear, and resultant morphology of PVDF/multiwalled carbon nanotube composites. Macromolecular Research, 19(4), 326-331. http://dx.doi.org/10.1007/s13233-011-0403-1.

8. Levi, N., Czerw, R., Xing, S., Iyer, P., & Carroll, D. L. (2004). Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Letters, 4(7), 1267-1271. http://dx.doi.org/10.1021/nl0494203.

9. He, L., Sun, J., Zheng, X., Xu, Q., & Song, R. (2011). Effect of multiwalled carbon nanotubes on crystallization behavior of poly (vinylidene fluoride) in different solvents. Journal of Applied Polymer Science, 119(4), 1905-1913. http://dx.doi.org/10.1002/app.32907.

10. Xu, Y., Zheng, W.-T., Yu, W.-X., Hua, L.-G., Zhang, Y.-J., & Zhao, Z.-D. (2010). Crystallization behavior and mechanical properties of poly (vinylidene fluoride)/multi-walled carbon nanotube nanocomposites. Chemical Research in Chinese Universities, 26(3), 491.

11. Mago, G., Fisher, F. T., & Kalyon, D. M. (2009). Deformation-induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites. Journal of Nanoscience and Nanotechnology, 9(5), 3330-3340. http://dx.doi.org/10.1166/jnn.2009.VC08. PMid:19453012.

12. Chen, W., Li, F., Han, G., Xia, J., Wang, L., Tu, J., & Xu, Z. (2003). Tribological behavior of carbon-nanotube-filled PTFE composites. Tribology Letters, 15(3), 275-278. http://dx.doi.org/10.1023/A:1024869305259.

13. Sementsov, Y. I., Gavrilyuk, N., Prikhod’ko, G., Melezhyk, A., Pyatkovsky, M., Yanchenko, V., Revo, S., Ivanenko, E., & Senkevich, A. (2007). Properties of PTFE–MWNT composite materials. In, Hydrogen materials science and chemistry of carbon nanomaterials. Netherlands: Springer. p. 757-763.

14. Yu, S., Zheng, W., Yu, W., Zhang, Y., Jiang, Q., & Zhao, Z. (2009). Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules, 42(22), 8870-8874. http://dx.doi.org/10.1021/ma901765j.

15. Mago, G., Kalyon, D. M., & Fisher, F. T. (2008). Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. Journal of Nanomaterials, 2008(17), 1-8. http://dx.doi.org/10.1155/2008/759825.

16. Huang, S., Yee, W. A., Tjiu, W. C., Liu, Y., Kotaki, M., Boey, Y. C. F., Ma, J., Liu, T., & Lu, X. (2008). Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir, 24(23), 13621-13626. http://dx.doi.org/10.1021/la8024183. PMid:18956851.

17. Wen, R., Ke, K., Wang, Y., Yang, W., Xie, B.-H., & Yang, M.-B. (2011). Interfacial interaction of polyvinylidene fluoride/multiwalled carbon nanotubes nanocomposites: A rheological study. Journal of Applied Polymer Science, 121(5), 3041-3046. http://dx.doi.org/10.1002/app.33927.

18. Park, E., Hong, S., Park, D., & Shim, S. (2010). Preparation of conductive PTFE nanocomposite containing multiwalled carbon nanotube via latex heterocoagulation approach. Colloid & Polymer Science, 288(1), 47-53. http://dx.doi.org/10.1007/s00396-009-2120-2.

19. Carabineiro, S. A., Pereira, M. F., Pereira, J. N., Caparros, C., Sencadas, V., & Lanceros-Mendez, S. (2011). Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites. Nanoscale Research Letters, 6(1), 302. http://dx.doi.org/10.1186/1556-276X-6-302. PMid:21711832.

20. Carabineiro, S., Pereira, M., Nunes-Pereira, J., Silva, J., Caparros, C., Sencadas, V., & Lanceros-Méndez, S. (2012). The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly (vinylidene fluoride) composites. Journal of Materials Science, 47(23), 8103-8111. http://dx.doi.org/10.1007/s10853-012-6705-7.

21. Xu, T., & Yang, J. (2012). Effects of surface modification of MWCNT on the mechanical and electrical properties of fluoro elastomer/MWCNT nanocomposites. Journal of Nanomaterials, 2012, 1-9. http://dx.doi.org/10.1155/2012/275637.

22. Smith, G., Park, D., Titchener, K., Davies, R., & West, R. (1995). Surface studies of oil-seal degradation. Applied Surface Science, 90(3), 357-371. http://dx.doi.org/10.1016/0169-4332(95)00165-4.

23. Heidarian, J., Hassan, A., & Lafia-Araga, R. A. (2015). Improving the thermal properties of fluoroelastomer (Viton GF-600S) using carbon nanotube. Submitted.

24. Gokon, N., Hasegawa, N., Kaneko, H., Aoki, H., Tamaura, Y., & Kitamura, M. (2003). Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Solar Energy Materials and Solar Cells, 80(3), 335-341. http://dx.doi.org/10.1016/j.solmat.2003.08.016.

25. Wang, J., Chen, P., Chen, L., Wang, K., Deng, H., Chen, F., Zhang, Q., & Fu, Q. (2012). Preparation and properties of poly (vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids. Express Polymer Letters, 6(4), 299-307. http://dx.doi.org/10.3144/expresspolymlett.2012.33.

26. Ma, J., & Larsen, R. M. (2012). Use of Hansen solubility parameters to predict dispersion and strain transfer of functionalized single-walled carbon nanotubes in poly(vinylidene fluoride) composites. Journal of Thermoplastic Composite Materials, 27(6), 801-815. http://dx.doi.org/10.1177/0892705712455036.

27. Wang, Y., Liu, L., Luo, Y., & Jia, D. (2009). Aging behavior and thermal degradation of fluoroelastomer reactive blends with poly-phenol hydroxy EPDM. Polymer Degradation & Stability, 94(3), 443-449. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.007.

28. Wang, Z., Wang, J., Li, Z., Gong, P., Liu, X., Zhang, L., Ren, J., Wang, H., & Yang, S. (2012). Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon, 50(15), 5403-5410. http://dx.doi.org/10.1016/j.carbon.2012.07.026.

29. Heidarian, J., & Hassan, A. (2014). Microstructural and thermal properties of fluoroelastomer/carbon nanotube composites. Composites. Part B, Engineering, 58, 166-174. http://dx.doi.org/10.1016/j.compositesb.2013.10.054.

30. Heidarian, J., & Hassan, A. (2015). Improving thermal properties of fluoroelastomer using carbon nanotubes in presence of air and under nitrogen flow. Asian Journal of Chemistry, 27(4), 1235-1239. http://dx.doi.org/10.14233/ajchem.2015.17200.
588371c57f8c9d0a0c8b4a5f polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections