Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2041
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Curing and thermal behavior of epoxy resins of hexafluoro - bisphenol –A and bisphenol-A

Kiran, Vaishnav; Gaur, Bharti

Downloads: 0
Views: 214

Abstract

This paper describes the synthesis and characterization of epoxy resins based on (hexafluoroisopropylidene)diphenol (EFN) and p,p’-isopropylidenebisphenol (EBN), respectively and 4, 4’- (hexafluoroisopropylidene)dipthalic-imideamine (IMAM), a curing agent. The synthesized epoxy resins and IMAM curing agent were characterized by Fourier Transform Infrared (FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopy.13C NMR technique was also used to characterize IMAM. Study of curing behavior of EFN and EBN with stoichiometric amount of aromatic 4,4’-diaminodiphenylmethane (DDM), 4,4’-diaminodiphenylsulfone (DDS) and IMAM by using Differential Scanning Calorimetery (DSC) indicated that IMAM was least reactive curing agent towards both epoxy resins as compared to DDS and DDM. The investigation of thermal decomposition of the cured compounds by thermogravimetric analyzer (TGA) indicated the higher thermal stability of EFN and EBN resins initially with DDS and at elevated temperatures with IMAM. It was also observed that EFN resins were thermally more stable than EBN resins cured with corresponding curing agents.

Keywords

aromatic diamines, curing behavior, epoxy resins, imide amine, thermal properties.

References

1. Lee, G. S., Lee, Y. C., & Gong, M. S. (2001). Prepration of epoxy resins containing ether ether sulfone unit and thermal properties. Bulletin of Korean Chemical Society, 22(12), 1393-1396.

2. Romao, B. M. V., Diniz, M. F., Azevedo, M. F. P., Lourenco, V. L., Pardini, L. C., Dutra, R. C. L., & Burel, F. (2006). Characterization of the curing agents used in epoxy resins with TG/FT-IR technique. Polímeros: Ciencia e Technologia, 16(2), 94-98. http://dx.doi.org/10.1590/S0104-14282006000200007.

3. Paluvai, N. R., Mohanty, S., & Nayak, S. K. (2014). Synthesis and modification of epoxy resins and their composites: A review. Polymer-Plastics Technology and Engineering, 53(16), 1723-1758. http://dx.doi.org/10.1080/03602559.2014.919658.

4. Tao, Z., Yang, S., Ge, Z., Chen, J., & Fan, L. (2007). Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidyllesterphenyl)-1-(3′-trifuoromethylphenyl)-2,2,2-trifluoroethane. European Polymer Journal, 43(2), 550-560. http://dx.doi.org/10.1016/j.eurpolymj.2006.10.030.

5. Vinicius, P., Bluma, S. G., & Raquel, M. S. (2013). Influence of the polyhedral oligomeric silsesquioxane n-phenylaminopropyposs in the thermal stability and the glass transition temperature of epoxy resin. Polímeros: Ciencia e Technologia, 23(3), 331-338. http://dx.doi.org/10.4322/polimeros.2013.039.

6. Alhousami, M. H. M., Al-Kamali, A. S. N., & Athawale, A. A. (2014). Synthesis and characterization of novel sulphanilamide/ epoxy resin modified polyester for thermal stability and impact strength. Open Journal of Polymer Chemistry, 4(4), 115-127. http://dx.doi.org/10.4236/ojpchem.2014.44013.

7. Dixit, V., Nagpal, A. K., & Singhal, R. (2010). Synthesis and characterization of phenoxy modified epoxy blends. Malaysian Polymer Journal, 5(2), 69-83. Retrieved in 20 December 2014, from http://www.fkkksa.utm.my/mpj

8. Oliveira, A., Backer, C. M., & Amico, S. C. (2015). Evaluation of the characteristics of an epoxy resin with diffrent degassing agents. Polímeros: Ciência e Tecnologia, 25(2), 186-191. http://dx.doi.org/10.1590/0104-1428.1661.

9. Yu, M., Feng, B., Xie, W., Fang, L., Li, H., Liu, L., Ren, M., Sun, J., Zhang, J., & Hu, H. (2015). The modification of a terafunctional epoxy and its curing reaction. Materials, 8(6), 3671-3684. http://dx.doi.org/10.3390/ma8063671.

10. Ge, Z., Tao, Z., LiuJ., Fan, J., & Yang, S. (2007). Synthesis and charaterization of novel trifunctional fluorine containing epoxy resins based on 1,1,1-Tris(2,3-epoxypropoxyphenyl)-2,2,2-trifluoroethane. Polymer Journal, 39(11), 1135-1142. http://dx.doi.org/ 10.1295/polymj.PJ2007096.

11. Cheng, J., Li, J., & Zhang, J. Y. (2009). Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4′-diaminodiphenyl sulfone. Express Polymer Letters, 3(8), 501-509. http://dx.doi.org/10.3144/expresspolymlett.2009.62.

12. Heo, G. Y., & Park, S. J. (2009). Effect of substituted trifluoromethyl groups on thermal and mechanical properties of fluorine containing epoxy resin. Macromolecular Research, 17(11), 870-873. http://dx.doi.org/10.1007/BF03218628.

13. Meenakshi, K. S., Pradeep, E., Sudhan, J., & Kumar, S. A. (2012). Development and characterization of new phosphorus based flame retardant tetraglycidyl epoxy nanocomposites for aerospace application. Bulletin of Materials Science, 35(2), 129-136. http://dx.doi.org/10.1007/s12034-012-0271-0.

14. Liu, J. G., He, M. H., Li, Z. X., Qian, Z. G., Wang, F. S., & Yang, S. Y. (2002). Synthesis and characterization of organosoluble polyimides with trifluoro-substituted benzene in the side chain. Journal of Polymer Science. Part A, Polymer Chemistry, 40(10), 1572-1582. http://dx.doi.org/10.1002/pola.10240.

15. Knoll, D. W., Nelson, D. H. & Keheres, P. W. (1958). Paint, plastics and printing ink chemistry. In 134th American Chemical Society Meeting (Paper No. 5, pp. 20). Chicago: Division of Paint, Plastics and Printing Ink Chemistry.

16. Maka, H., & Spychaj, T. (2012). Epoxy resin crosslinked with conventional and deep eutectic ionic liquids. Polimery, 57(6), 456-462. http://dx.doi.org/10.14314/polimery.2012.456.

17. Gaceva, G. B., & Buzarovska, A. (2013). A rapid method for the evaluation of cure kinetics of thermosetting polymers. Macedonian Journal of Chemistry and Chemical Engineering, 32(2), 337-344. Retrieved in 20 December 2014, from http://www. researchgate.net/260245399

18. Costa, L. M., Pardini, C. L., & Rezende, C. M. (2005). Influence of aromatic amine hardness in the cure kinetics of an epoxy resin used in advanced composites. Materials Research, 8(1), 65-70. http://dx.doi.org/10.1590/S1516-14392005000100012.

19. Su, W. F., Huang, H. W., & Pan, P. W. (2002). Thermal properties of rigid rod epoxies cured with diaminodiphenyl sulfone and dicyandiamide. Thermochimica Acta, 392/393, 391-394. http://dx.doi.org/10.1016/S0040-6031(02)00125-9.

20. Freeman, E. S., & Carroll, B. (1958). The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. Journal of Physical Chemistry, 62(4), 394-397. http://dx.doi.org/10.1021/j150562a003.

21. Coats, A. W., & Redfern, J. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0.

22. Horowitz, H. H., & Metzger, G. (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35(10), 1464-1468. http://dx.doi.org/10.1021/ac60203a013.

23. Dharwadkar, S. R., Kharkhanawala, M. D., Schwenker, R. P., & Garn, P. D. (1969). Thermal analysis in organic materials and physical chemistry. New York: Academic Press.

24. Tripathi, G., & Srivastava, D. (2011). Study on the effect of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer concentration on the decomposition kinetics parameters of blends of glycidyl epoxy and non-glycidyl epoxy resin. International Journal of Organic Chemistry, 1(3), 105-112. http://dx.doi.org/10.4236/ijoc.2011.13016.
588371d37f8c9d0a0c8b4a9b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections