Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2038
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Effects of polypropylene methyl polyhedral oligomeric silsesquioxanes and polypropylene-grafted maleic anhydride compatibilizers on the properties of palm kernel shell reinforced polypropylene biocomposites

Mohaiyiddin, Muhammad Safwan; Lin, Ong Hui; Akil, Hazizan Md; Yee, Toh Guat; Adik, Nik Nur Azza Nik; Villagracia, Al Rey

Downloads: 0
Views: 1141

Abstract

The effects of the polypropylene-grafted maleic anhydride (PP-g-MAH) and polypropylene methyl polyhedral oligomeric silsesquioxane (PP-POSS) compatibilizers on the mechanical, thermal and physical properties of palm kernel shell (PKS) reinforced polypropylene (PP) were investigated. The production of PP/PKS biocomposites was performed by melt mixing using Brabender Internal Mixer. Mechanical test results showed that the biocomposites with PP-g-MAH have better tensile strength compared to biocomposites with or without PP-POSS. The results also showed an increase in the tensile strength and elongation at break when compatibilizers were added. Polypropylene-grafted maleic anhydride improved the Young’s modulus of the biocomposites, but PP-POSS reduced it. Moreoever, adding compatibilizers in biocomposites reduced the water absorption of the biocomposites. The compatibilizers improved the nucleating ability of filler in the composites. The PP-g-MAH compatibilizer provided better performance in improving nucleating ability to biocomposites compared to PP-POSS.

Keywords

biocomposites, palm kernel shell, polypropylene-methyl-polyhedral oligomeric silsesquioxane, mechanical properties, thermal behavior.

References

1. Alengaram, U. J., Jumaat, M. Z., Mahmud, H., & Fayyadh, M. M. (2011). Shear behaviour of reinforced palm kernel shell concrete beams. Construction and Building, 25(6), 2918-2927. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.032.

2. Safwan, M. M., Lin, O. H., & Akil, H. M. (2013). Preparation and characterization of palm kernel shell/polypropylene biocomposites and their hybrid composites with Nanosilica. BioResources, 8(2), 1539-1550.

3. Yang, H. S., Wolcott, M. P., Kim, H. S., Kim, S., & Kim, H. J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369-375. http://dx.doi.org/10.1016/j.compstruct.2006.02.016.

4. Kim, H. S., Lee, B. H., Choi, S. W., Kim, S., & Kim, H. J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour filled polypropylene composites. Composites. Part A, Applied Science and Manufacturing, 38(6), 1473-1482. http://dx.doi.org/10.1016/j.compositesa.2007.01.004.

5. Wang, N., Zhang, J., Fang, Q., & Hui, D. (2013). Influence of mesoporous fillers with PP-g-MA on flammability and tensile behavior of polypropylene composites. Composites. Part B, Engineering, 44(1), 467-471. http://dx.doi.org/10.1016/j.compositesb.2012.04.006.

6. Dwivedi, U. K., & Chand, N. (2009). Influence of MA-g-PP on abrasive wear behavior of chopped sisal fibre reinforced polypropylene composites. Journal of Materials Processing Technology, 209(12-13), 5371-5375. http://dx.doi.org/10.1016/j.jmatprotec.2009.04.008.

7. Mai, K. C., Li, Z. J., & Zeng, H. M. (2001). Physical properties of PP-g-AA prepared by melt extrusion and its effects on mechanical properties of PP. Journal of Applied Polymer Science, 80(13), 2609-2616. http://dx.doi.org/10.1002/app.1372.

8. Zhou, Z., Zhang, Y., Zhang, Y., & Yin, N. (2008). Rheological behavior of polypropylene/octavinyl polyhedral oligomeric silsesquioxane composites. Journal of Polymer Science. Part B, Polymer Physics, 46(5), 526-533. http://dx.doi.org/10.1002/polb.21386.

9. Lin, O. H., Mohd Ishak, Z. A., & Akil, H. M. (2009). Preparation and properties of nanosilica-filled polypropylene composites with PP-methyl POSS as compatibiliser. Materials & Design, 30(3), 748-751. http://dx.doi.org/10.1016/j.matdes.2008.05.007.

10. Wang, Z., Wang, E., Zhang, S., Wang, Z., & Ren, Y. (2009). Effects of cross-linking on mechanical and physical properties of agricultural residues/ recycled thermoplastics composites. Industrial Crops and Products, 29(1), 133-138. http://dx.doi.org/10.1016/j.indcrop.2008.04.016.

11. Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood-fiber reinforced polypropylene composites: effect of novel compatibilizer with icocyanate functional group. Composites. Part A, Applied Science and Manufacturing, 38(2), 227-233. http://dx.doi.org/10.1016/j.compositesa.2006.05.005.

12. Sailaja, R. R. N. (2006). Mechanical and thermal properties of bleached kraft pulp-ldpe composites: effect of epoxy functionalized compatibilizer. Composites Science and Technology, 66(13), 2039-2048. http://dx.doi.org/10.1016/j.compscitech.2006.01.029.

13. Kim, H. S., Lee, B. H., Choi, S. W., Kim, S., & Kim, H. J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour filled polypropylene composites. Composites. Part A, Applied Science and Manufacturing, 38(6), 1473-1482. http://dx.doi.org/10.1016/j.compositesa.2007.01.004.

14. Yang, H. S., Gardner, D. J., & Kim, H. J. (2009). Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. Journal of Thermal Analysis and Calorimetry, 98(2), 553-558. http://dx.doi.org/10.1007/s10973-009-0324-9.

15. Khalid, M., Ratnam, C. T., Chuah, T. G., Ali, S., & Choong, T. S. Y. (2008). Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials & Design, 29(1), 173-178. http://dx.doi.org/10.1016/j.matdes.2006.11.002.

16. Wang, Y., Shen, H., Li, G., & Mai, K. (2010). Crystallization and melting behavior of PP/nano-CaCO3 composites with different interfacial interaction. Journal of Thermal Analysis and Calorimetry, 99(2), 399-407. http://dx.doi.org/10.1007/s10973-009-0130-4.

17. Butola, B. S., Joshi, M., & Kumar, S. (2010). Hybrid organic-inorganic poss (polyhedral oligomericsilsesquioxane)/ polypropylene nanocomposite filaments. Fibers and Polymers, 11(8), 1137-1145. http://dx.doi.org/10.1007/s12221-010-1137-y.

18. Zhang, W., & Muller, A. H. E. (2013). Architecture, self-assembly and properties of well-defined hybrid polymers based on Polyhedral Oligomeric Silsequioxane (POSS). Progress in Polymer Science, 38(8), 1121-1162. http://dx.doi.org/10.1016/j.progpolymsci.2013.03.002.

19. Zhou, Z., Zhang, Y., Zeng, Z., & Zhang, Y. (2008). Properties of POSS-filled polypropylene: comparison of physical blending and reactive blending. Journal of Applied Polymer Science, 110(6), 3745-3751. http://dx.doi.org/10.1002/app.29007.

20. Leong, Y. W., Abu-Bakar, M. B., Mohd-Ishak, Z. A., & Ariffin, A. (2004). Characterization of talc/calcium carbonate filled polypropylene hybrid composites weathered in a natural environment. Polymer Degradation & Stability, 83(3), 411-422. http://dx.doi.org/10.1016/j.polymdegradstab.2003.08.004.

21. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering, 39(6), 933-961. http://dx.doi.org/10.1016/j.compositesb.2008.01.002.

22. Ayrilmis, N., & Kaymakci, A. (2013). Fast growing biomass as reinforcing filler in thermoplastic composites: paulownia elongata wood. Industrial Crops and Products, 43, 457-464. http://dx.doi.org/10.1016/j.indcrop.2012.07.050.

23. Wu, J., & Mather, P. T. (2009). POSS polymers: physical properties and biomaterials applications. Journal of Macromolecular Science: Part C., 49, 25-63. http://dx.doi.org/10.1080/15583720802656237.

24. Nourbakhsh, A., Baghlani, F. F., & Ashori, A. (2011). Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Industrial Crops and Products, 33(1), 183-187. http://dx.doi.org/10.1016/j.indcrop.2010.10.010.

25. Premalal, H. G. B., Ismail, H., & Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833-839. http://dx.doi.org/10.1016/S0142-9418(02)00018-1.

26. Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2004). Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites. Part A, Applied Science and Manufacturing, 35(3), 339-345. http://dx.doi.org/10.1016/j.compositesa.2003.09.012.

27. Othman, N., Ismail, H., & Mariatti, M. (2006). Effect of compatibilizers on mechanical and thermal properties of bentonite filled polypropylene composites. Polymer Degradation & Stability, 91(8), 1761-1774. http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.022.

28. Akil, H. M., Rasyid, M. F. A., & Sharif, J. (2012). Effect of compatibilizer on properties of polypropylene layered silicate nanocomposites. Procedia Chemistry, 4, 65-72. http://dx.doi.org/10.1016/j.proche.2012.06.010.

29. Yang, H. S., Kim, H. J., Son, J., Park, H. J., Lee, B. J., & Hwang, T. S. (2004). Rice-husk flour filled polypropylene composites: mechanical and morphological study. Composite Structures, 63(3-4), 305-312. http://dx.doi.org/10.1016/S0263-8223(03)00179-X.

30. Chen, J. H., Rong, M. Z., Ruan, W. H., & Zhang, M. Q. (2009). Interfacial enhancement of nano-SiO2/polypropylene composites. Composites Science and Technology, 69(2), 252-259. http://dx.doi.org/10.1016/j.compscitech.2008.10.013.

31. Joshi, M., & Butola, B. S. (2004). Polymeric nanocomposites-polyhedral Oligomeric Sisesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science, 44(4), 389-410. http://dx.doi.org/10.1081/MC-200033687.

32. Valente, M., Sarasini, F., Marra, F., Tirillo, J., & Pulci, G. (2011). Hybrid recycled glass fiber/ wood flour thermoplastic composites: manufacturing and mechanical characterization. Composites. Part A, Applied Science and Manufacturing, 42(6), 649-567. http://dx.doi.org/10.1016/j.compositesa.2011.02.004.

33. Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Composite Structures, 72(4), 429-437. http://dx.doi.org/10.1016/j.compstruct.2005.01.013.

34. Demir, H., Atikler, U., Balkose, D., & Tihminlioglu, F. (2006). The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Composites. Part A, Applied Science and Manufacturing, 37(3), 447-456. http://dx.doi.org/10.1016/j.compositesa.2005.05.036.

35. Mohamad, J. S., Rozman, H. D., Mohd Ishak, Z. A., Abusamah, A., & Rahim, S. (2007). The effect of PP/MAPP blends on the EFB fibers for improving tensile and dimensional stability properties. Journal of Oil Palm Research, 19, 338-349.

36. El-Sabbagh, A. (2014). Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites. Part B, Engineering, 57, 126-135. http://dx.doi.org/10.1016/j.compositesb.2013.09.047.

37. Manchado, M. A. L., Valentini, L., Biagiotti, J., & Kenny, J. M. (2005). Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 43(7), 1499-1505. http://dx.doi.org/10.1016/j.carbon.2005.01.031.

38. Molnar, K., Moczo, J., Murariu, M., Dubois, P., & Pukanszky, B. (2008). Factors affecting the properties of PLA/CaSO4 composites: homogeneity and interactions. Express Polymer Letters, 3(1), 49-61. http://dx.doi.org/10.3144/expresspolymlett.2009.8.

39. Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2007). The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/ talc hybrid composites. Composites. Part B, Engineering, 38(3), 367-379. http://dx.doi.org/10.1016/j.compositesb.2006.06.010.

40. Smith, E. R., Howlin, B. J., & Hamerton, I. (2013). Using POSS reagents to reduce hydrophobic character in polypropylene nanocomposites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(41), 12971-12980. http://dx.doi.org/10.1039/c3ta80001f.
588371d87f8c9d0a0c8b4ab3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections