Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2030
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

High density polyethylene and zirconium phosphate nanocomposites

Lino, Adan Santos; Mendes, Luis Claudio; Silva, Daniela de França da; Malm, Olaf

Downloads: 0
Views: 346

Abstract

Nanocomposite based on high density polyethylene (HDPE) and layered zirconium phosphate organically modified with octadecylamine (ZrPOct) was obtained through melt processing. The ZrPOct was synthesized by precipitation and modified by suspension and sonication procedures. The initial and maximum degradation temperatures (Tonset and Tmax) were increased. A slight decrease of crystallinity degree was detected. Reduction of elastic modulus and elongation at break were noticed. The lamellar spacing was increased (3.3 times higher). The storage modulus decreased and low field nuclear magnetic resonance (LFNMR) revealed an increasing of molecular mobility. The presence of octadecylamine enhanced the entrance of HDPE in the ZrPOct galleries. Several characteristics of HDPE were changed indicating that intercalation was successful. All results indicated that partially intercalated and/or exfoliated nanocomposite was achieved.

Keywords

nanocomposite, HDPE, layered zirconium phosphate.

References

1. Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Review article: polymer-matrix nanocomposites, processing, manufacturing, and applicatio: an overview. Journal of Composite Materials, 40(17), 1511-1575. http://dx.doi.org/10.1177/0021998306067321.

2. Brito, G. F., Oliveira, A. D., Araújo, E. M., Melo, T. J. A., Barbosa, R., & Ito, E. N. (2008). Nanocompósitos de polietileno/argila bentonita nacional: influência da argila e do agente compatibilizante PE-g-MA nas propriedades mecânicas e de inflamabilidade. Polímeros: Ciência e Tecnologia, 18(2), 170-177. http://dx.doi.org/10.1590/S0104-14282008000200015.

3. Esteves, A. C. C., Barros-Timmons, A., & Trindade, T. (2004). Nanocompósitos de matriz polimérica: estratégias de síntese de materiais híbridos. Química Nova, 27(5), 798-806. http://dx.doi.org/10.1590/S0100-40422004000500020.

4. Barbosa, R., Araújo, E. M., Melo, T. J. A., & Ito, E. N. (2007). Preparação de argilas organofílicas e desenvolvimento de nanocompósitos de polietileno. Parte 2: comportamento de inflamabilidade. Polímeros: Ciência e Tecnologia, 17(2), 104-112. http://dx.doi.org/10.1590/S0104-14282007000200009.

5. Komatsu, D., Otaguro, H., & Ruvolo Filho, A. C. (2014). Avaliação comparativa entre os nanocompósitos de argila motmorilonita/LLDPE e com hexaniobato de potássio/LLDPE: caracterização das propriedades mecânicas e de transporte. Polímeros: Ciência e Tecnologia, 24(1), 37-44. http://dx.doi.org/10.4322/polimeros.2013.052.

6. Costantino, U., Vivani, R., Zima, V., & Cernoskova, E. (1997). Thermoanalytical study, phase transitions, and dimensional changes of α-Zr(HPO4)2.H2O large crystals. Journal of Solid State Chemistry, 132(1), 17-23. http://dx.doi.org/10.1006/jssc.1997.7385.

7. Sue, H. J., Gam, K. T., Bestaoui, N., Spurr, N., & Clearfield, A. (2004). Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chemistry of Materials, 16(2), 242-249. http://dx.doi.org/10.1021/cm030441s.

8. Chum, P. S., & Swogger, K. (2008). Olefin polymer technologies: history and recent progress at The Dow Chemical Company. Progress in Polymer Science, 33(8), 797-819. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.003.

9. Chrissafis, K., Paraskevopoulos, K. M., Pavlidou, E., & Bikiaris, D. (2009). Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochimica Acta, 485(1-2), 65-71. http://dx.doi.org/10.1016/j.tca.2008.12.011.

10. Chae, D. W., Kim, K. J., & Kim, B. C. (2006). Effects of silicate-1 nanoparticles on rheological and physical properties of HDPE. Polymer, 47(10), 3609-3615. http://dx.doi.org/10.1016/j.polymer.2006.03.053.

11. Swain, S. K., & Isayev, A. I. (2007). Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties. Polymer, 48(1), 281-289. http://dx.doi.org/10.1016/j.polymer.2006.11.002.

12. Jiang, X., & Drzal, L. T. (2010). Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: morphology and mechanical properties. Polymer Composites, 31(6), 1091-1098. http://dx.doi.org/10.1002/pc.20896.

13. Dai, X., Shang, Q., Jia, Q., Li, S., & Xiu, Y. (2010). Preparation and properties of HDPE/CaCO3/OMMT ternary nanocomposite. Polymer Enginnering and Science, 50(5), 894-899. http://dx.doi.org/10.1002/pen.21608.

14. Lee, Y. H., Park, C., Sain, M., Kontopoulou, M., & Zheng, W. (2007). Effects of clay dispersion and content on the rheological, mechanical properties, and flame retardance of HDPE/clay nanocomposites. Journal of Applied Polymer Science, 105(4), 1993-1999. http://dx.doi.org/10.1002/app.26403.

15. Alberti, G., Costantino, U., Allulli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds: a new class of materials having layered structure of the zirconium phosphate type. Journal of Inorganic and Nuclear Chemistry, 40(6), 1113-1117. http://dx.doi.org/10.1016/0022-1902(78)80520-X.

16. Clearfield, A., & Smith, G. D. (1969). The crystallography and structure of zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemistry, 8(3), 431-436. http://dx.doi.org/10.1021/ic50073a005.

17. Brandão, L. S., Mendes, L. C., Medeiros, M. E., Sirelli, L., & Dias, M. L. (2006). Thermal and mechanical properties of poly(ethylene terephthalate)/lamelar zirconium phosphate nanocomposites. Journal of Applied Polymer Science, 102(4), 3868-3876. http://dx.doi.org/10.1002/app.24096.

18. Ramis, L. B. (2007). Compósitos termoplásticos contendo fosfatos e fosfonatos lamelares de zircônio e titânio (Master’s thesis). Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

19. Pérez-Santano, A., Trujillano, R., Belver, C., Gil, A., & Vicente, M. A. (2005). Effect on the intercalation conditions of a montmorillonite with octadecylamine. Journal of Colloid and Interface Science, 284(1), 239-244. http://dx.doi.org/10.1016/j.jcis.2004.09.066. PMid:15752808.

20. Weiss, Z., Valaskova, M., Kristkova, M., Capkova, P., & Pospisil, M. (2003). Intercalation and grafting of vermiculite with octadecylamine using low-temperature melting. Clays and Clay Minerals, 51(5), 555-565. http://dx.doi.org/10.1346/CCMN.2003.0510509.

21. Eckman, R. R., Henrichs, P. M., & Peacock, A. J. (1997). Study of polyethylene by solid state NMR relaxation and spin diffusion. Macromolecules, 30(8), 2474-2481. http://dx.doi.org/10.1021/ma9516753.

22. Tavares, M. I. B., Rodrigues, T., Soares, I., Moreira, A., & Ferreira, A. (2009). The use of solid state NMR to characterize high density polyethylene/organoclay nanocomposites. Chemistry and Chemical Technology, 3(3), 187-190. Retrieved in 12 December 2014, from http://old.lp.edu.ua/fileadmin/ICCT/journal/Vol.3/Num.3/05.pdf

23. Mendes, L. C., Silva, D. F., & Lino, A. S. (2012). Linear low-density polyethylene and zirconium phosphate nanocomposites: evidence from thermal, thermo-mechanical, morphological and low-field nuclear magnetic resonance techniques. Journal of Nanoscience and Nanotechnology, 12(12), 8867-8873. http://dx.doi.org/10.1166/jnn.2012.6718. PMid:23447930.

24. Cestari, S. P. (2010). Papel sintético sustentável para embalagem (Master’s thesis). Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

25. Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002.

26. Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28(1-2), 1-63. http://dx.doi.org/10.1016/S0927-796X(00)00012-7.

27. Rocha, M. C. G., Coutinho, F. M. B., & Estephen, B. (1994). Índice de fluidez: uma variável de controle de processos de degradação controlada de polipropileno por extrusão reativa. Polímeros: Ciência e Tecnologia, 4(3), 33-37. Retrieved in 12 December 2014, from http://www.revistapolimeros.org.br/PDF/v4n3/v4n3a03.pdf
588371c77f8c9d0a0c8b4a6a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections