Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240111
Polímeros: Ciência e Tecnologia
Original Article

Composites of natural rubber with curaua fibers

João D’Anuzio Lima de Azevedo; Virgínia Mansanares Giacon; José Roberto Ribeiro Bortoleto

Downloads: 0
Views: 27

Abstract

This paper analyzed the thermal and mechanical properties of natural rubber/curaua fiber composite with different weight contents (2.5% to 15%). Alkali treatment was used to modify the surface of curaua fiber and improve interfacial bonding. Results showed that alkali treatment did not affect the dispersion pattern of composites. TGA revealed that both fiber content and treatment minimally influenced the thermal stability of composites. However, thermal conductivity showed up to 34,2% reductions compared to the matrix for low fiber contents, with an increased tendency for higher contents. The tensile strength of composites showed improvements up to 161% for 2.5% loads, but there was a decreasing tendency when filler load increased, indicating problems with dispersed phase distribution. Overall, composites made with treated fibers exhibited better mechanical properties than those without treatment, showing better interfacial adhesion, and the 2.5% fiber content presented the best combination of thermal and mechanical properties.

 

Keywords

curaua fiber, natural rubber, composite, lignocellulosic

References

1 Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., Agwa, I. S., Zeyad, A. M., Tayeh, B. A., & Adesina, A. (2022). Possibilities for the application of agro-industrial wastes in cementitious materials: a brief review of the Brazilian perspective. Cleaner Materials, 3, 100040. http://doi.org/10.1016/j.clema.2021.100040.

2 Souza, F. G., Jr., Oliveira, G. E., Rodrigues, C. H. M., Soares, B. G., Nele, M., & Pinto, J. C. (2009). Natural Brazilian Amazonic (Curaua) fibers modified with polyaniline nanoparticles. Macromolecular Materials and Engineering, 294(8), 484-491. http://doi.org/10.1002/mame.200900033.

3 Colorado, H. A., Monteiro, S. N., Delaqua, G. C. G., & Vieira, C. M. (2023). Natural vegetable fibers used from Colombia and their use as potential reinforcement for composite materials. In TMS 2023 152nd Annual Meeting & Exhibition (pp. 1263-1270). Cham: Springer Nature. http://doi.org/10.1007/978-3-031-22524-6_122.

4 Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties, and applications. Composites. Part A, Applied Science and Manufacturing, 38(7), 1694-1709. http://doi.org/10.1016/j.compositesa.2007.02.006.

5 Silva, R. L. (2014). Influência dos agentes de acoplamento na degradação ambiental de compósitos de polipropileno-fibra de curauá (Master’s dissertation). Universidade Federal do ABC, Santo André.

6 Spinacé, M. A. S., Lambert, C. S., Fermoselli, K. K. G., & De Paoli, M.-A. (2009). Characterization of lignocellulosic curaua fibers. Carbohydrate Polymers, 77(1), 47-53. http://doi.org/10.1016/j.carbpol.2008.12.005.

7 Caraschi, J. C., & Leão, A. L. (2000). Characterization of curaua fiber. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 353(1), 149-152. http://doi.org/10.1080/10587250008025655.

8 Zwawi, M. (2021). A review on natural fiber bio-composites, surface modifications and applications. Molecules, 26(2), 404. http://doi.org/10.3390/molecules26020404. PMid:33466725.

9 Członka, S., Kerche, E. F., Neves, R. M., Strąkowska, A., & Strzelec, K. (2021). Bio-based rigid polyurethane foam composites reinforced with bleached Curauá fiber. International Journal of Molecular Sciences, 22(20), 11203. http://doi.org/10.3390/ijms222011203. PMid:34681863.

10 Zah, R., Hischier, R., Leão, A. L., & Braun, I. (2007). Curaua fibers in the automobile industry–a sustainability assessment. Journal of Cleaner Production, 15(11-12), 1032-1040. http://doi.org/10.1016/j.jclepro.2006.05.036.

11 Gonçalves, F. A. C., Amaral, E. L. S., Lopes, J. L., Jr., Lopes, B. L. S., Ribeiro, L. S., Jr., Brabo, D. R., & Amarante, C. B. (2018). Plant fibers: general aspects, utilization, technological innovation and use in composites. Revista Espacios, 39(6), 12. Retrieved in 2024, December 3, from https://www.revistaespacios.com/a18v39n06/18390612.html

12 Libera, V. D., Jr., Teixeira, L. A., Leão, R. M., & Luz, S. M. (2019). Evaluation of thermal behavior and cure kinetics of a curauá fiber prepreg by the non-isothermal method. Materials Today: Proceedings, 8(Part 3), 839-846. http://doi.org/10.1016/j.matpr.2019.02.026.

13 Delgado-Aguilar, M., Tarrés, Q., Marques, M. F. V., Espinach, F. X., Julián, F., Mutjé, P., & Vilaseca, F. (2019). Explorative study on the use of Curauá reinforced polypropylene composites for the automotive industry. Materials, 12(24), 4185. http://doi.org/10.3390/ma12244185. PMid:31842484.

14 del Pino, G. G., Bezazi, A., Boumediri, H., Kieling, A. C., Garcia, S. D., Torres, A. R., Soares, R. S., Macêdo, J. C., No., Dehaini, J., & Panzera, T. H. (2021). Optimal tensile properties of biocomposites made of treated amazonian Curaua fibres using Taguchi method. Materials Research, 24(Suppl. 2), e20210326. http://doi.org/10.1590/1980-5373-mr-2021-0326.

15 Jesus, L. C. C., Oliveira, J. M., Leão, R. M., Beltrami, L. R., Zattera, A. J., Anflor, C. T. M., Doca, T. C. R., & Luz, S. M. (2022). Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/polylactic acid composites. Polymer Testing, 113, 107665. http://doi.org/10.1016/j.polymertesting.2022.107665.

16 Teixeira, F. P., & Silva, F. A. (2020). On the use of natural curaua reinforced cement based composites for structural applications. Cement and Concrete Composites, 114, 103775. http://doi.org/10.1016/j.cemconcomp.2020.103775.

17 Salgado, I. P., & Silva, F. A. (2021). Flexural behavior of sandwich panels combining curaua fiber-reinforced composite layers and autoclaved aerated concrete core. Construction & Building Materials, 286, 122890. http://doi.org/10.1016/j.conbuildmat.2021.122890.

18 Masłowski, M., Aleksieiev, A., Miedzianowska, J., & Strzelec, K. (2021). Common nettle (Urtica dioica L.) as an active filler of natural rubber biocomposites. Materials, 14(7), 1616. http://doi.org/10.3390/ma14071616. PMid:33810368.

19 Lozada, E. R., Aguilar, C. M. G., Carvalho, J. A. J., Sánchez, J. C., & Torres, G. B. (2023). Vegetable cellulose fibers in natural rubber composites. Polymers, 15(13), 2914. http://doi.org/10.3390/polym15132914. PMid:37447558.

20 Zhou, Y., Fan, M., & Chen, L. (2016). Interface and bonding mechanisms of plant fiber composites: an overview. Composites. Part B, Engineering, 101, 31-45. http://doi.org/10.1016/j.compositesb.2016.06.055.

21 van Beilen, J. B., & Poirier, Y. (2007). Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 25(11), 522-529. http://doi.org/10.1016/j.tibtech.2007.08.009. PMid:17936926.

22 Khan, M. Z. R., & Srivastava, S. K. (2018). Development, characterization and application potential of bio-composites: a review. IOP Conference Series. Materials Science and Engineering, 404, 012028. http://doi.org/10.1088/1757-899X/404/1/012028.

23 Rybiński, P., Syrek, B., Masłowski, M., Miedzianowska, J., Strzelec, K., Żukowski, W., & Bradło, D. (2018). Influence of lignocellulose fillers on properties natural rubber composites. Journal of Polymers and the Environment, 26(6), 2489-2501. http://doi.org/10.1007/s10924-017-1144-9.

24 Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fiber composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing, 83, 98-112. http://doi.org/10.1016/j.compositesa.2015.08.038.

25 Mouhoubi, S., Bourahli, M. E. H., Osmani, H., & Abdeslam, S. (2017). Effect of alkali treatment on alfa fibers behavior. Journal of Natural Fibers, 14(2), 239-249. http://doi.org/10.1080/15440478.2016.1193088.

26 Oliveira, P. F., & Marques, M. F. V. (2014). Comparison between coconut and curaua fibers chemically treated for compatibility with PP matrixes. Journal of Reinforced Plastics and Composites, 33(5), 430-439. http://doi.org/10.1177/0731684413516392.

27 Xiong, X., Bao, Y., Liu, H., Zhu, Q., Lu, R., & Miyakoshi, T. (2019). Study on mechanical and electrical properties of cellulose nanofibrils/graphene-modified natural rubber. Materials Chemistry and Physics, 223, 535-541. http://doi.org/10.1016/j.matchemphys.2018.11.041.

28 Tenazoa, C., Savastano, H., Charca, S., Quintana, M., & Flores, E. (2021). The effect of alkali treatment on chemical and physical properties of ichu and cabuya fibers. Journal of Natural Fibers, 18(7), 923-936. http://doi.org/10.1080/15440478.2019.1675211.

29 Prasanna, G. V., Srilekha, R., Sri Harsha, A. V. N., Sai Abhi Chandan, V., & Sunil Kumar, V. (2021). Hybridization and influence of chemical treatment on the morphology and optimization of composites. Materials Today: Proceedings, 44(Part 6), 4833-4837. http://doi.org/10.1016/j.matpr.2020.11.695.

30 Santos, L. M. P. (2015). Development and characterization of latex (natural rubber) and carnauba fiber biocomposite (Master’s dissertation). Universidade Federal do Rio Grande do Norte, Natal.

31 Souza, J. R., Fo. (2015). Obtaining and characterizing an eco-composite based on latex and coconut straw sheath for thermal and acoustic insulation (Doctoral thesis). Universidade Federal do Rio Grande do Norte, Natal.

32 Sales, C. G. (2015). Curaua fiber as reinforcement in cement matrix for the manufacture of roof tiles and fiber cement boards (Master’s dissertation). Universidade Federal do Pará, Belém.

33 Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794. http://doi.org/10.1177/004051755902901003.

34 Vaccioli, K. B. (2022). Effect of addition of silica, graphene oxide and organosulfur agents on vulcanization and properties of compounds based on natural rubber (Doctoral thesis). Universidade de São Paulo, São Paulo.

35 Cerna Ñahuis, L. E. (2021). Incorporation of hydrogel particles into natural rubber microfibers obtained by solution blow spinning (Master’s dissertation). Universidade Estadual Paulista, Ilha Solteira.

36 Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibers. Materials & Design, 47, 424-442. http://doi.org/10.1016/j.matdes.2012.11.025.

37 Miedzianowska, J., Masłowski, M., Rybiński, P., & Strzelec, K. (2020). Properties of chemically modified (selected silanes) lignocellulosic filler and its application in natural rubber biocomposites. Materials, 13(18), 4163. http://doi.org/10.3390/ma13184163. PMid:32962174.

38 Karim, A. F. A., Ismail, H., & Ariff, Z. M. (2015). Properties and characterization of kenaf-filled natural rubber latex foam. BioResources, 11(1), 1080-1091. http://doi.org/10.15376/biores.11.1.1080-1091.

39 Moonart, U., & Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose, 26(12), 7271-7295. http://doi.org/10.1007/s10570-019-02611-w.

40 Hasan, A., Rabbi, M. S., & Billah, M. M. (2022). Making the lignocellulosic fibers chemically compatible for composite: a comprehensive review. Cleaner Materials, 4, 100078. http://doi.org/10.1016/j.clema.2022.100078.

41 Sekino, N. (2016). Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores. Journal of Wood Science, 62(1), 20-26. http://doi.org/10.1007/s10086-015-1523-6.

42 Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17. http://doi.org/10.1016/j.susmat.2015.05.002.

43 Dikmen, N., & Ozkan, S. T. E. (2016). Unconventional insulation materials. In A. Almusaed & A. Almssad (Eds.), Insulation materials in context of sustainability (pp. 3-23). Rijeka: IntechOpen. http://doi.org/10.5772/63311.

44 Satish, P., Kumar, M. D. S., Prasanna, A. B., & Prakash, C. D. S. (2020). Investigation on behavioural aspects of pine apple leaf fiber-latex composites used for transformer applications. Materials Today: Proceedings, 28(Part 2), 1039-1043. http://doi.org/10.1016/j.matpr.2019.12.348.

45 Saffian, H. A., Talib, M. A., Lee, S. H., Md Tahir, P., Lee, C. H., Ariffin, H., & Mohamed Asa’ari, A. Z. (2020). Mechanical strength, thermal conductivity, and electrical breakdown of kenaf core fiber/lignin/polypropylene biocomposite. Polymers, 12(8), 1833. http://doi.org/10.3390/polym12081833. PMid:32824275.

46 Agus Suryawan, I. G. P., Suardana, N. P. G., Winaya, I. N. S., & Budiarsa Suyasa, I. W. (2020). Study on correlation between hardness and thermal conductivity of polymer composites reinforced with stinging nettle fiber. International Journal of Civil Engineering and Technology, 11(1), 94-104. http://doi.org/10.34218/IJCIET.11.1.2020.010.

47 Paiva, F. F. G., Maria, V. P. K., Barrera Torres, G., Dognani, G., Santos, R. J., Cabrera, F. C., & Job, A. E. (2019). Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. Journal of Material Cycles and Waste Management, 21(2), 326-335. http://doi.org/10.1007/s10163-018-0801-y.

48 Ubi, P. A., Adah, P. U., Ademoh, N. A., Salawu, A. A., Hassan, A. B., Dashe, J. D., & Oyeyemi, S. W. (2022). Rice husk ash reinforced natural rubber composites: effect of benzene diazonium salt treatment. Nigerian Journal of Technology, 41(5), 879-886. http://doi.org/10.4314/njt.v41i5.8.

49 Gurjar, A. K., Kulkarni, S. M., Joladarashi, S., & Doddamani, S. (2024). Investigation of mechanical properties of luffa fibre reinforced natural rubber composites: implications of process parameters. Journal of Materials Research and Technology, 29, 4232-4244. http://doi.org/10.1016/j.jmrt.2024.02.133.

50 Sareena, C., Ramesan, M. T., & Purushothaman, E. (2012). Utilization of coconut shell powder as a novel filler in natural rubber. Journal of Reinforced Plastics and Composites, 31(8), 533-547. http://doi.org/10.1177/0731684412439116.
 

68a71a4ea95395470f1a73d6 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections