Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240110
Polímeros: Ciência e Tecnologia
Original Article

Determination of elastomer content in NR/SBR/BR blends

Alexandra Helena de Barros; Rachel Farias Magalhães; Lídia Mattos Silva Murakami; Milton Faria Diniz; Natália Beck Sanches; Taynara Alves de Carvalho; Jorge Carlos Narciso Dutra; Rita de Cássia Lazzarini Dutra

Downloads: 0
Views: 22

Abstract

Determining elastomer content in ternary rubbers via infrared (IR) spectroscopy presents challenges due to spectral band overlap.Coupled techniques could be a solution, but in certain cases it can also involve overlapping events resulting in greater errors. The best option is to use an instrumental technique with appropriate conditions that avoid overlapping. This paper presents the development of transmission/reflection IR methodologies for the content determination of a blend with natural rubber, styrene-butadiene copolymer, and polybutadiene (NR/SBR/BR), with A887 and A1375 bands for NR and A699 for SBR. The BR content, which was calculated by subtraction of the NR and SBR results from the IR methodology, is confirmed by acid-resistance quantitative data. The methodologies errors (2 to 6%), with non-overlapping bands, encompass what is found in the literature (5%). Such development ensures the determination of elastomer content in ternary rubbers with fast and accurate methodologies.

 

Keywords

acid-resistance, IR, reflection, ternary rubber, transmission

References

1 bin Salim, M. A., binti Sheikh Md. Fadzullah, S. H., bin Omar, G., bin Akop, M. Z., bin Abdul Hamid, N., & bin Tamaldin, N. (2018). Challenges and developments of rubber materials as vibration isolator. In S. Hashmi, & A. Choudhury (Eds.), Encyclopedia of renewable and sustainable materials (pp. 64-88). Amsterdam: Elsevier. http://doi.org/10.1016/B978-0-12-803581-8.10365-0.

2 Rubio-Mateos, A., Casuso, M., Rivero, A., Ukar, E., & Lamikiz, A. (2021). Vibrations characterization in milling of low stiffness parts with a rubber-based vacuum fixture. Chinese Journal of Aeronautics, 34(6), 54-66. http://doi.org/10.1016/j.cja.2020.04.002.

3 Zhang, C., Wu, J., Teng, F., Su, B., Wang, Y., & Ao, H. (2021). Theoretical and experimental characterization for macro-micro friction behaviors of EPDM rubber. Polymer Testing, 99, 107213. http://doi.org/10.1016/j.polymertesting.2021.107213.

4 Rigoli, P. S., Murakami, L. M. S., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Mattos, E. C., & Dutra, R. C. L. (2019). Quantification of aerospace polymer blends by thermogravimetric analysis and infrared spectrometry. Journal of Aerospace Technology and Management, 11, e0619. http://doi.org/10.5028/jatm.v11.986.

5 Rippel, M. M., & Bragança, F. C. (2009). Borracha natural e nanocompósitos com argila. Química Nova, 32(3), 818-826. http://doi.org/10.1590/S0100-40422009000300024.

6 Muniz, A. M. S., Sizenando, D., Lobo, G., Neves, E. B., Gonçalves, M., Marson, R., Palhano, R., Menegaldo, L., & Bini, R. R. (2021). Effects from loaded walking with polyurethane and styrene-butadiene rubber midsole military boots on kinematics and external forces: a statistical parametric mapping analysis. Applied Ergonomics, 94, 103429. http://doi.org/10.1016/j.apergo.2021.103429. PMid:33862308.

7 Yick, K.-K., & Tse, C.-Y. (2021). The use of textiles and materials for orthopedic footwear insoles. In A. Luximon (Ed.), Handbook of footwear design and manufacture (pp. 361-388). Cambridge: Woodhead Publishing. http://doi.org/10.1016/B978-0-12-821606-4.00012-0.

8 Ye, W., Xu, X., Zhan, M., Huang, Q., Li, X., Jiao, W., & Yin, Y. (2022). Formation behavior of PAHs during pyrolysis of waste tires. Journal of Hazardous Materials, 435, 128997. http://doi.org/10.1016/j.jhazmat.2022.128997. PMid:35490634.

9 Kaewsakul, W., Noordermeer, J. W. M., Sahakaro, K., Sengloyluan, K., Saramolee, P., Dierkes, W. K., & Blume, A. (2021). Natural rubber and epoxidized natural rubber in combination with silica fillers for low rolling resistance tires. In S. Kohjiya, & Y. Ikeda (Eds.), Chemistry, manufacture, and application of natural rubber (pp. 247-316). Cambridge: Woodhead Publishing. http://doi.org/10.1016/B978-0-12-818843-9.00009-6.

10 Yoon, B., Kim, J. Y., Hong, U., Oh, M. K., Kim, M., Han, S. B., Nam, J.-D., & Suhr, J. (2020). Dynamic viscoelasticity of silica-filled styrene-butadiene rubber/polybutadiene rubber (SBR/BR) elastomer composites. Composites. Part B, Engineering, 187, 107865. http://doi.org/10.1016/j.compositesb.2020.107865.

11 Malas, A., Pal, P., & Das, C. K. (2014). Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Materials & Design, 55, 664-673. http://doi.org/10.1016/j.matdes.2013.10.038.

12 Nawawi, M. A., Har, S. L., & Han, C. C. (2012). Miscibility of polymer blends comprising poly (ethylene oxide)-epoxidized natural rubber. International Journal of Chemical Engineering and Applications, 3(6), 410-412. http://doi.org/10.7763/IJCEA.2012.V3.230.

13 Jovanović, S., Samaržija-Jovanović, S., Marković, G., Jovanović, V., Adamović, T., & Marinović-Cincović, M. (2018). Ternary NR/BR/SBR rubber blend nanocomposites. Journal of Thermoplastic Composite Materials, 31(2), 265-287. http://doi.org/10.1177/0892705717697778.

14 Lee, Y. S., Lee, W.-K., Cho, S.-G., Kim, I., & Ha, C.-S. (2007). Quantitative analysis of unknown compositions in ternary polymer blends: a model study on NR/SBR/BR system. Journal of Analytical and Applied Pyrolysis, 78(1), 85-94. http://doi.org/10.1016/j.jaap.2006.05.001.

15 Sanches, N. B., Diniz, M. F., Reis, T. B., Cassu, S. N., & Dutra, R. C. L. (2006). Evaluation of PIR-G/FT-IR techniques for characterization of elastomers. Polímeros: Ciência e Tecnologia, 16(3), 211-216. http://doi.org/10.1590/S0104-14282006000300010.

16 Puskas, J. E., Chiang, K., & Barkakaty, B. (2014). Natural rubber (NR) biosynthesis: perspectives from polymer chemistry. In S. Kohjiya, & Y. Ikeda (Eds.), Chemistry, manufacture and applications of natural rubber (pp. 30-67). Cambridge: Woodhead Publishing. http://doi.org/10.1533/9780857096913.1.30.

17 Youn, J.-S., Kim, Y.-M., Siddiqui, M. Z., Watanabe, A., Han, S., Jeong, S., Jung, Y.-W., & Jeon, K.-J. (2021). Quantification of tire wear particles in road dust from industrial and residential areas in Seoul, Korea. The Science of the Total Environment, 784, 147177. http://doi.org/10.1016/j.scitotenv.2021.147177. PMid:33895514.

18 Shahi, A., Dwivedi, C., & Manjare, S. (2022). Experimental and theoretical investigation on pyrolysis of various sections of the waste tire and its components. Chemical Engineering Research & Design, 179, 66-76. http://doi.org/10.1016/j.cherd.2021.12.022.

19 Mattonai, M., Nacci, T., & Modugno, F. (2022). Analytical strategies for the quali-quantitation of tire and road wear particles: a critical review. Trends in Analytical Chemistry, 154, 116650. http://doi.org/10.1016/j.trac.2022.116650.

20 Yu, S., Yang, Q., Li, Z., Liu, T., Tao, L., Yao, E., & Zhang, Y. (2022). Mechanism analysis of gas products from catalytic pyrolysis of tire rubber based on reaction thermodynamics and kinetics. Fuel Processing Technology, 227, 107134. http://doi.org/10.1016/j.fuproc.2021.107134.

21 Kubota, R., Obama, T., Kawakami, T., Sakai, S., Inoue, K., & Ikarashi, Y. (2022). Characterization of synthetic turf rubber granule infill in Japan: total content and migration of metals. The Science of the Total Environment, 842, 156705. http://doi.org/10.1016/j.scitotenv.2022.156705. PMid:35716741.

22 Sakai, S., Tahara, M., Kubota, R., Kawakami, T., Inoue, K., & Ikarashi, Y. (2022). Characterization of synthetic turf rubber granule infill in Japan: volatile organic compounds. The Science of the Total Environment, 838(Pt 3), 156400. http://doi.org/10.1016/j.scitotenv.2022.156400. PMid:35660619.

23 Stoček, R., Heinrich, G., Kipscholl, R., & Kratina, O. (2021). Cut & chip wear of rubbers in a range from low up to high severity conditions. Applied Surface Science Advances, 6, 100152. http://doi.org/10.1016/j.apsadv.2021.100152.

24 Magalhães, R. F., Barros, A. H., Takematsu, M. M., Passero, A., Diniz, M. F., Sciamareli, J., & Dutra, R. C. L. (2022). Infrared reflectance techniques applied to silica particles diameter determination - theoretical and experimental data. Anais da Academia Brasileira de Ciências, 94(3), e20210545. PMid:36259823.

25 Espósito, L. H., & Marzocca, A. J. (2020). Effect of electron beam irradiation on aging time, thermal vulcanization kinetic and mechanical properties of SSBR/NR/BR compounds filled with silica. Radiation Physics and Chemistry, 170, 108651. http://doi.org/10.1016/j.radphyschem.2019.108651.

26 Chen, Y., Guan, J., Hu, H., Gao, H., & Zhang, L. (2016). Structural change and interfacial interaction in blended rubber composites filled with silica-kaolin hybrid fillers: a Fourier transform infrared spectroscopic study. Spectroscopy Letters, 49(2), 118-127. http://doi.org/10.1080/00387010.2015.1104696.

27 Shao, H., Guo, Q., & He, A. (2021). Strategy for the NR/BR blends with improved thermo-oxidative resistance. Polymer Degradation & Stability, 191, 109665. http://doi.org/10.1016/j.polymdegradstab.2021.109665.

28 Jovanović, S., Jovanović, V., Marković, G., Samaržija-Jovanović, S., Milićević, Z., Marinović-Cincović, M., & Budinski-Simendić, J. (2019). Elastomers based on NR/BR/SBR ternary rubber blend: morphological, mechanical and thermal properties. Chemical Industry & Chemical Engineering Quarterly, 25(1), 31-38. http://doi.org/10.2298/CICEQ171106016J.

29 Barros, A. H., Murakami, L. M. S., Magalhães, R. F., Takematsu, M. M., Diniz, M. F., Sanches, N. B., Dutra, J. C. N., & Dutra, R. C. L. (2023). Infrared quantification of binary rubber blends with overlapping bands. Anais da Academia Brasileira de Ciências, 95(1), e20220289. http://doi.org/10.1590/0001-3765202320220289.

30 Rigoli, P. S., Barros, A. H., Magalhães, R. F., Murakami, L. M. S., Carrara, A. E., Dutra, J. C. N., Mattos, E. C., & Dutra, R. C. L. (2021). Determination of polychloroprene content in Rubber blend containing ethylene propylene diene monomer by infrared techniques. Journal of Aerospace Technology and Management, 13, e0821. http://doi.org/10.1590/jatm.v13.1197.

31 Riba, J.-R., Mansilla, M. Á., Canals, T., & Cantero, R. (2019). Composition determination of rubber blends by applying differential scanning calorimetry and spa-pls treatment. Materials Research, 22(1), e20180415. http://doi.org/10.1590/1980-5373-mr-2018-0415.

32 Azevedo, J. B., Murakami, L. M. S., Ferreira, A. C., Diniz, M. F., Silva, L. M., & Dutra, R. C. L. (2018). Quantification by FT-IR (UATR/NIRA) of NBR/SBR blends. Polímeros: Ciência e Tecnologia, 28(5), 440-449. http://doi.org/10.1590/0104-1428.00918.

33 Takematsu, M. M., Baruel, A. F., Cassu, S. N., Diniz, M. F., Graves, D. A., & Dutra, R. C. L. (2023). Development and characterization of sodium polyacrylate/bentonite hydrogel with epoxy resin coating. Polímeros: Ciência e Tecnologia, 33(2), e20230021. http://doi.org/10.1590/0104-1428.20230029.

34 Carvalho, T. A., Gama, A. C., Magalhães, R. F., Diniz, M. F., Sanches, N. B., & Dutra, R. C. L. (2021). Determination of nitrogen and acrylic / styrene components in nitrocellulose systems by UATR and NIRA infrared techniques. Polymer Testing, 93, 106962. http://doi.org/10.1016/j.polymertesting.2020.106962.

35 Magalhães, R. F., Barros, A. H., Takematsu, M. M., Sanches, N. B., Quagliano, J. C. A., & Dutra, R. C. L. (2020). FT-IR surface analysis of poly[(4-hydroxybenzoic)-ran-(2-hydroxy-6-naphthoic acid)] fiber – a short review. Polymer Testing, 90, 106750. http://doi.org/10.1016/j.polymertesting.2020.106750.

36 Mello, T. S. D., Diniz, M. F., & Dutra, R. C. L. (2018). UATR and NIRA evaluation in the quantification of ATBC in NC blends. Polímeros: Ciência e Tecnologia, 28(3), 239-245. http://doi.org/10.1590/0104-1428.16816.

37 Fahelelbom, K. M., Saleh, A., Al-Tabakha, M. M. A., & Ashames, A. A. (2022). Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: a brief review. Reviews in Analytical Chemistry, 41(1), 21-33. http://doi.org/10.1515/revac-2022-0030.

38 Diez, C., Rojo, M. Á., Martín-Gil, J., Martín-Ramos, P., Garrosa, M., & Córdoba-Diaz, D. (2022). Infrared spectroscopic analysis of the inorganic components from teeth exposed to psychotherapeutic drugs. Minerals (Basel), 12(1), 28. http://doi.org/10.3390/min12010028.

39 Shimadzu Corporation. (2020, April 14). Raw materials identification testing by NIR spectroscopy and Raman spectroscopy. Shimadzu. Retrieved in 2024, November 26, from https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/tips-ftir/raman.html

40 Campos, E. A., Dutra, R. C. L., Rezende, L. C., Diniz, M. F., Nawa, W. M. D., & Iha, K. (2010). Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants. Journal of Aerospace Technology and Management, 2(3), 323-330. http://doi.org/10.5028/jatm.2010.02038010.

41 Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New York: John Wiley & Sons.

42 Smith, A. L. (1979). Applied infrared spectroscopy: fundamentals techniques and analytical problem-solving. New York: John Wiley & Sons.

43 Harms, D. L. (1953). Identification of complex organic materials: by infrared spectra of their pyrolysis products. Analytical Chemistry, 25(8), 1140-1155. http://doi.org/10.1021/ac60080a002.

44 Sanches, N. B., Pedro, R., Diniz, M. F., Mattos, E. C., Cassu, S. N., & Dutra, R. C. L. (2013). Infrared spectroscopy applied to materials used as thermal insulation and coatings. Journal of Aerospace Technology and Management, 5(4), 421-430. http://doi.org/10.5028/jatm.v5i4.265.

45 Fernández-Berridi, M. J., González, N., Mugica, N., & Bernicot, C. (2006). Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochimica Acta, 444(1), 65-70. http://doi.org/10.1016/j.tca.2006.02.027.

46 Ghebremeskel, G., & Shield, S. R. (2003). Characterization of binary/tertiary blends of SBR, NBR and PVC by IR spectroscopy. Rubber World, 227(4), 26-30. Retrieved in 2024, November 26, from https://www.thefreelibrary.com/Characterization+of+binary%2Ftertiary+blends+of+SBR%2C+NBR+and+PVC+by+IR...-a097726744

47 Datta, S., Antos, J., & Stocek, R. (2017). Characterisation of ground tyre rubber by using combination of FT-IR numerical parameter and DTG analysis to determine the composition of ternary rubber blend. Polymer Testing, 59, 308-315. http://doi.org/10.1016/j.polymertesting.2017.02.019.

48 Ferrão, M. F. (2001). Técnicas de reflexão no infravermelho aplicadas na análise de alimentos. Tecnologica, 5, 65-85. Retrieved in 2024, November 26, from https://www.researchgate.net/publication/281653266_TECNICAS_DE_REFLEXAO_NO_INFRAVERMELHO_APLICADAS_NA_ANALISE_DE_ALIMENTOS

49 Hórak, M., & Vítek, A. (1978). Interpretation and processing of vibrational spectra. New York: John Wiley & Sons.

50 Dutra, R. C. L., & Diniz, M. F. (1993). Resistência à degradação oxidativa e comportamento aos solventes como indicadores da composição de sistemas elastoméricos vulcanizados mistos. Polímeros: Ciência e Tecnologia, 3(3), 25-28. Retrieved in 2024, November 26, from https://revistapolimeros.org.br/article/588371347f8c9d0a0c8b47a4

51 Ferreira, A. C., Diniz, M. F., Ferreira, A. C. B., Sanches, N. B., & Mattos, E. C. (2020). FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85, 106447. http://doi.org/10.1016/j.polymertesting.2020.106447.

52 Dutra, R. C. L., & Soares, B. G. (1998). Determination of the vinyl mercaptoacetate content in poly (ethylene-co-vinyl acetate-co-vinyl mercaptoacetate) (EVASH) by TGA analysis and FTIR spectroscopy. Polymer Bulletin, 41(1), 61-67. http://doi.org/10.1007/s002890050333.
 

68a72055a9539549d56c2043 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections