Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240108
Polímeros: Ciência e Tecnologia
Original Article

Biocomposite films utilizing sugar cane bagasse and banana peel aiming seedling applications

Thiago Torres Matta Neves; Simone Taguchi Borges; Luiz Antonio Borges Junior; Edla Maria Bezerra Lima; Cristiane Hess de Azevedo Meleiro; Ana Paula Duarte Moreira; Antonieta Middea; Renata Nunes Oliveira

Downloads: 0
Views: 19

Abstract

This study developed biocomposite films from poly(vinyl alcohol) (PVA), sugar cane bagasse (SCB), and banana peel fibers (BF) or starch-rich banana flour (BS). Morphological analysis revealed filler distribution and fluid percolation within the polymer matrix. Physicochemical analysis indicated stronger interactions between components in BF-containing films. Mechanical strength decreased significantly in SCB-containing films, while biodegradation increased, particularly with banana waste. Water absorption was higher in PVA-BF-SCB and PVA-BS-CSB biocomposites. Incorporating SCB and banana waste into PVA films presents a promising approach for developing biodegradable composite packaging materials, potentially replacing low-density polyethylene in applications like seedling production. This biodegradable material can be applied directly to the environment.

 

Keywords

degradation, PVA, sugar cane bagasse, banana, hydrogel

References

1 Lima, E. M. B., Middea, A., Reis, F. S., Mateus, D. N., Amorim, R. G., Pereira, I. C. S., Santos, N. R. R., Mattos, M. C., Minguita, A. P. S., Anjos, M. R., Neumann, R., Oliveira, R. N., & Tavares, M. I. B. (2024). Influence of the microstructure in the biodegradability process of eco-friendly materials based on polylactic acid and mango seed for food packaging to minimize microplastic generation. Journal of Applied Polymer Science, 141(22), e55449. http://doi.org/10.1002/app.55449.

2 Cazón, P., Velazquez, G., & Vázquez, M. (2019). Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: mechanical and barrier properties. Food Hydrocolloids, 89, 481-491. http://doi.org/10.1016/j.foodhyd.2018.11.012.

3 Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32(2), 501-529. http://doi.org/10.1007/s13593-011-0068-3.

4 Nascimento, J., Leite, K., & Gomes, K. (2024). Biodegradable containers made from mesquite pods Prosopis juliflora (Sw.) DC for the production of plant seedlings. Concilium, 24(10), 409-428. http://doi.org/10.53660/CLM-3470-24I74.

5 Dilkushi, H. A. S., Jayarathna, S., Manipura, A., Chamara, H. K. B. S., Edirisinghe, D., Vidanarachchi, J. K., & Priyashantha, H. (2024). Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative. Carbohydrate Polymer Technologies and Applications, 7, 100472. http://doi.org/10.1016/j.carpta.2024.100472.

6 Duquette, D., & Dumont, M.-J. (2019). Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polymer Bulletin, 76(5), 2683-2710. http://doi.org/10.1007/s00289-018-2516-6.

7 Croitoru, C., Pop, M. A., Bedo, T., Cosnita, M., Roata, I. C., & Hulka, I. (2020). Physically Crosslinked Poly (Vinyl Alcohol)/Kappa-Carrageenan Hydrogels: structure and applications. Polymers, 12(3), 560. http://doi.org/10.3390/polym12030560. PMid:32138357.

8 Mittal, A., Garg, S., & Bajpai, S. (2020). Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application. Materials Today: Proceedings, 21(Part 3), 1577-1582. http://doi.org/10.1016/j.matpr.2019.11.210.

9 Julinová, M., Vaňharová, L., & Jurča, M. (2018). Water-soluble polymeric xenobiotics – Polyvinyl alcohol and polyvinylpyrrolidon – And potential solutions to environmental issues: a brief review. Journal of Environmental Management, 228, 213-222. http://doi.org/10.1016/j.jenvman.2018.09.010. PMid:30223180.

10 Sarebanha, S., & Farhan, A. (2018). Eco-friendly composite films based on polyvinyl alcohol and jackfruit waste flour. Journal of Packaging Technology and Research, 2(3), 181-190. http://doi.org/10.1007/s41783-018-0043-4.

11 Chiellini, E., Corti, A., & Solaro, R. (1999). Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polymer Degradation & Stability, 64(2), 305-312. http://doi.org/10.1016/S0141-3910(98)00206-7.

12 Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science, 28(6), 963-1014. http://doi.org/10.1016/S0079-6700(02)00149-1.

13 Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. http://doi.org/10.1016/j.jclepro.2020.120978.

14 Varghese, S. A., Pulikkalparambil, H., Rangappa, S. M., Siengchin, S., & Parameswaranpillai, J. (2020). Novel biodegradable polymer films based on poly(3hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life, 25, 100538. http://doi.org/10.1016/j.fpsl.2020.100538.

15 Moorthy, M. K. M., Gurusamy, S., Pandiarajan, B., Balasubramanian, B., Pandiarajan, N., Suyambulingam, I., Rangappa, S. M., & Siengchin, S. (2024). Effect of alkali-treated Putranjiva roxburghii seed shell filler on physico-chemical, thermal, mechanical, and barrier properties of polyvinyl alcohol-based biofilms. Journal of Vinyl and Additive Technology, 30(4), 1010-1024. http://doi.org/10.1002/vnl.22101.

16 Moretti, M. M. S., Bocchini-Martins, D. A., Nunes, C. C. C., Villena, M. A., Perrone, O. M., Silva, R., Boscolo, M., & Gomes, E. (2014). Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Applied Energy, 122, 189-195. http://doi.org/10.1016/j.apenergy.2014.02.020.

17 Kumar, R., Verma, D., Singh, B. L., Kumar, U., & Shweta, K. M. (2010). Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology, 101(17), 6707-6711. http://doi.org/10.1016/j.biortech.2010.03.111. PMid:20403689.

18 Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., & Zhang, Y. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers, 211, 49-56. http://doi.org/10.1016/j.carbpol.2019.01.093. PMid:30824103.

19 Irvin, C. W., Satam, C. C., Meredith, J. C., & Shofner, M. L. (2019). Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals. Composites. Part A, Applied Science and Manufacturing, 116, 147-157. http://doi.org/10.1016/j.compositesa.2018.10.028.

20 Andrade, B. A., Perius, D. B., Mattos, N. V., Luvielmo, M. M., & Mellado, M. S. (2018). Production of unripe banana flour (Musa spp) for application in whole wheat bread. Brazilian Journal of Food Technology, 21, e2016055. http://doi.org/10.1590/1981-6723.5516.

21 Castelo-Branco, V. N., Guimarães, J. N., Souza, L., Guedes, M. R., Silva, P. M., Ferrão, L. L., Miyahira, R. F., Guimarães, R. R., Freitas, S. M. L., Reis, M. C., & Zago, L. (2017). The use of green banana (Musa balbisiana) pulp and peel flour as an ingredient for tagliatelle pasta. Brazilian Journal of Food Technology, 20, e2016119. http://doi.org/10.1590/1981-6723.11916.

22 Arquelau, P. B. F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570-578. http://doi.org/10.1016/j.foodhyd.2018.11.029.

23 Pitak, N., & Rakshit, S. K. (2011). Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables. Lebensmittel-Wissenschaft + Technologie, 44(10), 2310-2315. http://doi.org/10.1016/j.lwt.2011.05.024.

24 Maiti, S., Ray, D., Mitra, D., & Mukhopadhyay, A. (2013). Isolation and characterisation of starch/polyvinyl alcohol degrading fungi from aerobic compost environment. International Biodeterioration & Biodegradation, 82, 9-12. http://doi.org/10.1016/j.ibiod.2013.01.018.

25 Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385-401. http://doi.org/10.1016/j.tifs.2020.09.015.

26 Elgharbawy, A. S., El Demerdash, A.-G. M., Sadik, W. A., Kasaby, M. A., Lotfy, A. H., & Osman, A. I. (2024). Synthetic degradable polyvinyl alcohol polymer and its blends with starch and cellulose - A comprehensive overview. Polymers, 16(10), 1356. http://doi.org/10.3390/polym16101356. PMid:38794547.

27 Yue, H., Li, X., Mai, L., Wu, Q., He, M., Yin, G., Peng, J., Yang, C., & Guo, J. (2024). Sustainable cottonseed protein bioplastics: physical and chemical reinforcement, and plant seedling growth application. Chemical Engineering Journal, 497, 154794. http://doi.org/10.1016/j.cej.2024.154794.

28 Spiridon, I., Popescu, M. C., Bodârlău, R., & Vasile, C. (2008). Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch. Polymer Degradation & Stability, 93(10), 1884-1890. http://doi.org/10.1016/j.polymdegradstab.2008.07.017.

29 Ayyubi, S. N., Purbasari, A., & Kusmiyati, (2022). The effect of composition on mechanical properties of biodegradable plastic based on chitosan/cassava starch/PVA/crude glycerol: optimization of the composition using box behnken design. Materials Today: Proceedings, 63(Suppl. 1), S78-S83. http://doi.org/10.1016/j.matpr.2022.01.294.

30 Hu, Y., Wang, Q., & Tang, M. (2013). Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film. Carbohydrate Polymers, 96(2), 384-388. http://doi.org/10.1016/j.carbpol.2013.04.011. PMid:23768577.

31 Santos, L. A., Jr, Thiré, R. M. S. M., Lima, E. M. B., Racca, L. M., & Silva, A. L. N. (2018). Mechanical and thermal properties of environment friendly composite based on mango’s seed shell and high-density polyethylene. Macromolecular Symposia, 381(1), 1800125. http://doi.org/10.1002/masy.201800125.

32 Moubarik, A., & Grimi, N. (2015). Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Research International, 73, 169-175. http://doi.org/10.1016/j.foodres.2014.07.050.

33 Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N.-S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8), 644. http://doi.org/10.3390/ma9080644. PMid:28773763.

34 Mahindrakar, K. V., & Rathod, V. K. (2018). Utilization of banana peels for removal of strontium (II) from water. Environmental Technology & Innovation, 11, 371-383. http://doi.org/10.1016/j.eti.2018.06.015.

35 Ramírez-Hernández, A., Aparicio-Saguilán, A., Reynoso-Meza, G., & Carrillo-Ahumada, J. (2017). Multi-objective optimization of process conditions in the manufacturing of banana (Musa paradisiaca L.) starch/natural rubber films. Carbohydrate Polymers, 157, 1125-1133. http://doi.org/10.1016/j.carbpol.2016.10.083. PMid:27987814.

36 Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690. http://doi.org/10.1016/j.foodhyd.2012.08.007.

37 Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S. (2006). Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research, 9(2), 185-191. http://doi.org/10.1590/S1516-14392006000200014.

38 Gaidukov, S., Danilenko, I., & Gaidukova, G. (2015). Characterization of strong and crystalline polyvinyl alcohol/montmorillonite films prepared by layer-by-layer deposition method. International Journal of Polymer Science, 2015(1), 123469. http://doi.org/10.1155/2015/123469.

39 Awada, H., & Daneault, C. (2015). Chemical modification of poly(vinyl alcohol) in water. Applied Sciences, 5(4), 840-850. http://doi.org/10.3390/app5040840.

40 Alhosseini, S. N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., Kargozar, S., & Jalali, N. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 7, 25-34. http://doi.org/10.2147/IJN.S25376. PMid:22275820.

41 Daniliuc, L., & David, C. (1996). Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid): 2. Correlation between the states of sorbed water and the interactions in homopolymers and their blends. Polymer, 37(23), 5219-5227. http://doi.org/10.1016/0032-3861(96)00328-X.

42 Gohil, J. M., Bhattacharya, A., & Ray, P. (2006). Studies on the crosslinking of poly (vinyl alcohol). Journal of Polymer Research, 13(2), 161-169. http://doi.org/10.1007/s10965-005-9023-9.

43 Bhargav, P. B., Mohan, V. M., Sharma, A. K., & Rao, V. V. R. N. (2008). Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications. Journal of Applied Polymer Science, 108(1), 510-517. http://doi.org/10.1002/app.27566.

44 Bilba, K., & Ouensanga, A. (1996). Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis, 38(1-2), 61-73. http://doi.org/10.1016/S0165-2370(96)00952-7.

45 Bagali, S. S., Gowrishankar, B. S., & Roy, A. S. (2017). Optimization, kinetics, and equilibrium studies on the removal of lead(II) from an aqueous solution using banana pseudostem as an adsorbent. Engineering, 3(3), 409-415. http://doi.org/10.1016/J.ENG.2017.03.024.

46 Benítez, A. N., Monzón, M. D., Angulo, I., Ortega, Z., Hernández, P. M., & Marrero, M. D. (2013). Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement, 46(3), 1065-1073. http://doi.org/10.1016/j.measurement.2012.11.021.

47 Vilardi, G., Di Palma, L., & Verdone, N. (2018). Heavy metals adsorption by banana peels micro-powder: equilibrium modeling by non-linear models. Chinese Journal of Chemical Engineering, 26(3), 455-464. http://doi.org/10.1016/j.cjche.2017.06.026.

48 Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2013). Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite. Advanced Materials Letters, 4(8), 626-631. http://doi.org/10.5185/amlett.2012.12482.

49 Aarstad, O., Heggset, E. B., Pedersen, I. S., Bjørnøy, S. H., Syverud, K., & Strand, B. L. (2017). Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers, 9(8), 378. http://doi.org/10.3390/polym9080378. PMid:30971055.

50 Ooi, Z. X., Ismail, H., & Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer film composites based on polyvinyl alcohol and tropical fruit waste flour. In S.M. Sapuan, H. Ismail, & E.S. Zainudin (Eds.), Natural fibre reinforced vinyl ester and vinyl polymer composites, development, characterization and applications (pp.313-332). Cambridge, UK: Woodhead Publishing. http://doi.org/10.1016/B978-0-08-102160-6.00016-0

51 Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Industrial Crops and Products, 32(3), 353-359. http://doi.org/10.1016/j.indcrop.2010.05.014.

52 Debiagi, F., Kobayashi, R. K. T., Nakazato, G., Panagio, L. A., & Mali, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Industrial Crops and Products, 52, 664-670. http://doi.org/10.1016/j.indcrop.2013.11.032.

53 Sruthimol, J. J., Haritha, K., Warrier, A. S., Nandhu Lal, A. M., Harikrishnan, M. P., Rahul, C. J., & Kothakota, A. (2025). Tailoring the properties of natural fibre biocomposite using chitosan and silk fibroin coatings for eco-friendly packaging. Industrial Crops and Products, 225, 120465. http://doi.org/10.1016/j.indcrop.2025.120465.

54 Lani, N. S., Ngadi, N., Johari, A., & Jusoh, M. (2014). Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. Journal of Nanomaterials, 2014(1), 702538. http://doi.org/10.1155/2014/702538.

55 Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S., & El-Meligy, M. A. (2014). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 7(3), 372-380. http://doi.org/10.1016/j.arabjc.2013.05.026.

56 Montes, L. F. S., Melaj, M. A., Lorenzo, M. C., Ribba, L., & Garcia, M. A. (2024). Biodegradable composite materials based on cassava starch and reinforced with topinambur (Helianthus tuberosus) aerial part fiber. Sustainable Polymer & Energy, 2(2), 10004. http://doi.org/10.35534/spe.2024.10004.

57 Sasimowski, E., Grochowicz, M., Janczak, K., Nurzyńska, A., & Belcarz-Romaniuk, A. (2025). Investigation of biodegradation, artificial aging and antibacterial properties of poly(butylene succinate) biocomposites with onion peels and wheat bran. Materials, 18(2), 293. http://doi.org/10.3390/ma18020293. PMid:39859764.

58 Zobel, H. F. (1988). Molecules to granules: a comprehensive starch review. Stärke, 40(2), 44-50. http://doi.org/10.1002/star.19880400203.

59 Rogojanu, A., Rusu, E., Olaru, N., Dobromir, M., & Dorohoi, D. O. (2011). Development and characterization of poly(vinyl alcohol) matrix for drug release. Digest Journal of Nanomaterials and Biostructures, 6(2), 809-818. Retrieved in 2024, December 24, from https://www.researchgate.net/publication/330542815

60 Chen, M.-J., Zhang, X.-Q., Matharu, A., Melo, E., Li, R.-M., Liu, C.-F., & Shi, Q.-S. (2017). Monitoring the crystalline structure of sugar cane bagasse in aqueous ionic liquids. ACS Sustainable Chemistry & Engineering, 5(8), 7278-7283. http://doi.org/10.1021/acssuschemeng.7b01526.

61 Pająk, J., Ziemski, M., & Nowak, B. (2010). Poly(vinyl alcohol): biodegradable vinyl material. Chemik, 64(7-8), 523-530. Retrieved in 2024, December 24, from https://bibliotekanauki.pl/articles/1287265

62 Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: depth profiling by photoacoustic spectroscopy. Geoderma, 335, 94-103. http://doi.org/10.1016/j.geoderma.2018.08.003.

63 Margenot, A. J., Calderón, F. J., Goyne, K. W., Mukome, F. N. D., & Parikh, S. J. (2017). IR spectroscopy, soil analysis applications. In J. C. Lindon, G. E. Tranter, & D. W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry (pp. 448-454). Amsterdam: Academic Press. http://doi.org/10.1016/B978-0-12-409547-2.12170-5

64 Arancibia, M. Y., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2014). Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control, 44, 7-15. http://doi.org/10.1016/j.foodcont.2014.03.025.

65 Duarte, M. A. T., Duek, E. A. R., & Motta, A. C. (2014). In vitro degradation of poly (L-co-D,L lactic acid) containing PCL-T. Polímeros: Ciência e Tecnologia, 24(1), 1-8. http://doi.org/10.4322/polimeros.2014.056.

66 Borrelli, N., Alvarez, M. F., Osterrieth, M. L., & Marcovecchio, J. E. (2010). Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina: a preliminary study. Journal of Soils and Sediments, 10(6), 983-994. http://doi.org/10.1007/s11368-010-0205-7.

67 Norsuraya, S., Fazlena, H., & Norhasyimi, R. (2016). Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara amorphous-15 (SBA-15). Procedia Engineering, 148, 839-846. http://doi.org/10.1016/j.proeng.2016.06.627.
 

68a71c83a95395479f1ceda5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections