Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240103
Polímeros: Ciência e Tecnologia
Original Article

Physico-mechanical and structural characterization of polyethylene films and thermoplastic pinto bean starch

Tomás Jesús Madera-Santana; Anabell Espinoza Verdugo; Víctor Rejón-Moo; Judith Fortiz Hernández

Downloads: 0
Views: 22

Abstract

Starch is a biopolymer that is abundant in nature, low-cost, biodegradable, and can be transformed into a thermoplastic material. This work evaluates the films’ physicochemical, thermal, and mechanical properties based on low-density polyethylene (LDPE) and thermoplastic starch (TPS) from beans. Films of four formulations of LDPE with TPS (0, 5, 10, and 15%) were formulated by the extrusion process. The films were evaluated for thickness, color, mechanical properties (tensile strength, Young’s modulus, elongation at break), barrier, and morphological properties. The barrier properties (WVTR and WVP) significantly increased when TPS was incorporated into the films. While the tensile strength and Young’s modulus did not present changes with the addition of TPS, the elongation at break increased from 204.14 to 343.81% with the addition of TPS. Adding TPS to an LDPE matrix modifies its physico-mechanical properties favorably so that it can be applied as a material for flexible packaging.

 

Keywords

thermoplastic starch, LDPE, blown-extrusion, films, physicochemical properties

References

1 Samir, A., Ashour, F. H., Abdel Hakim, A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. npj Material Degradations, 6(1), 68. http://doi.org/10.1038/s41529-022-00277-7.

2 García-Guzmán, L., Cabrera-Barjas, G., Soria-Hernández, C. G., Castaño, J., Guadarrama-Lezama, A. Y., & Llamazares, S. R. (2022). Review progress in starch-based materials for food packaging applications. Polysaccharides, 3(1), 136-177. http://doi.org/10.3390/polysaccharides3010007.

3 Apriyanto, A., Compart, J., & Fettke, J. (2022). A review of starch, a unique biopolymer-structure, metabolism, and in-plant modifications. Plant Science, 318, 111223. http://doi.org/10.1016/j.plantsci.2022.111223. PMid:35351303.

4 Kupervaser, M. G., Traffano-Schiffo, M. V., Dellamea, M. L., Flores, S. K., & Sosa, C. A. (2023). Trends in starch-based edible films and coatings enriched with tropical fruits extracts: a review. Food Hydrocolloids for Health, 4, 100138. http://doi.org/10.1016/j.fhfh.2023.100138.

5 Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348-356. http://doi.org/10.1016/j.ijbiomac.2017.01.122. PMid:28137462.

6 Rahardiyan, D., Mauren Moko, E., Tan, J. S., & Lee, C. K. (2023). Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging: a review. Enzyme and Microbial Technology, 168, 110260. http://doi.org/10.1016/j.enzmictec.2023.110260. PMid:37224591.

7 Prachayawarakorn, J., Hommanee, L., Phose, D., & Chairapaksatien, P. (2010). Property improvement of thermoplastic mung bean starch using cotton and low-density polyethylene. Stärke, 62(8), 435-443. http://doi.org/10.1002/star.201000002.

8 Gonçalves, I., Lopes, J., Barra, A., Hernández, D., Nunes, C., Kapusniak, K., Kapusniak, J., Evtyugin, D. V., Silva, J. A. L., Ferreira, P., & Coimbra, M. A. (2020). Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts. International Journal of Biological Macromolecules, 163, 251-259. http://doi.org/10.1016/j.ijbiomac.2020.06.231. PMid:32615230.

9 Panrong, T., Karbowiak, T., & Harnkarnsujarit, N. (2019). Thermoplastic starch and green tea blends with LLDPE films for active packaging of meat and oil-based products. Food Packaging and Shelf Life, 21, 100331. http://doi.org/10.1016/j.fpsl.2019.100331.

10 Bangar, S. P., Whiteside, W. S., Ashogbon, A. O., & Kumar, M. (2021). Recent advances in thermoplastic starches for food packaging: a review. Food Packaging and Shelf Life, 30, 100743. http://doi.org/10.1016/j.fpsl.2021.100743.

11 Ballesteros-Martínez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal, 20, 1-9. http://doi.org/10.1016/j.nfs.2020.06.002.

12 Association of Official Agricultural Chemists – AOAC. (2005). Official methods of analysis of AOAC International. Rockville: AOAC International.

13 McGrance, S. J., Cornell, H. J., & Rix, C. J. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Stärke, 50(4), 158-163. http://doi.org/10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.

14 Barraza-Jauregui, G., Soriana-Colchado, J., Obregon, J., Martinez, P., Peña, F., Velezmoro, C., Siche, R., & Miano, A. C. (2020). Physicochemical, functional and structural properties of starches obtained from five varieties of native potatoes (Solanum tuberosum L.). In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Integration, and Alliances for a Sustainable Development” “Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy (pp. 1-10). Boca Raton: LACCEI. http://doi.org/10.18687/LACCEI2020.1.1.623.

15 Sindhu, R., Devi, A., & Khatkar, B. S. (2019). Physicochemical, thermal and structural properties of heat moisture treated common buckwheat starches. Journal of Food Science and Technology, 56(5), 2480-2489. http://doi.org/10.1007/s13197-019-03725-6. PMid:31168130.

16 Martinez, P., Malaga, A., Betalleluz, I., Ibarz, A., & Velezmoro, C. (2015). Caracterización funcional de almidones nativos obtenidos de papas (Solanum phureja) nativas peruanas. Scientia Agropecuaria, 6(4), 291-301. http://doi.org/10.17268/sci.agropecu.2015.04.06.

17 Escárcega-Galaz, A. A., Sánchez-Machado, D. I., López-Cervantes, J., Sanches-Silva, A., Madera-Santana, T. J., & Paseiro-Losada, P. (2018). Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. International Journal of Biological Macromolecules, 116, 472-481. http://doi.org/10.1016/j.ijbiomac.2018.04.149. PMid:29727650.

18 American Society for Testing and Materials – ASTM. (2010). ASTM E96/E96M-10: standard test methods for water vapor transmission of materials. West Conshohocken: ASTM.

19 American Society for Testing and Materials – ASTM. (2002). ASTM D882-02: standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.

20 Hoover, R., Li, Y. X., Hynes, G., & Senanayake, N. (1997). Physicochemical characterization of mung bean starch. Food Hydrocolloids, 11(4), 401-408. http://doi.org/10.1016/S0268-005X(97)80037-9.

21 Montoya-Anaya, D. G., Rodriguez-Nuñez, J. R., Aguirre-Mancilla, C. L., Grijalva-Verdugo, C., Quitana-Owen, P., & Madera-Santana, T. (2023). Films made of potato starch from industrial potato straggles and polyethylene: physicochemical, thermal, and mechanical properties. Iranian Polymer Journal, 32(10), 1321-1333. http://doi.org/10.1007/s13726-023-01215-3.

22 Villada, H. S., Acosta, H. A., & Velasco, R. J. (2008). Investigación de almidones termoplástico, precursores de productos biodegradables. Información Tecnológica, 19(2), 3-14. http://doi.org/10.4067/S0718-07642008000200002.
 

68a71c41a95395478a255c65 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections