Direct-joining of a polylactide acid-hydroxyapatite biocomposite with a titanium alloy
Renan Adauto; Gean Henrique Marcatto de Oliveira; Mário Augusto Morozo; Márcio Antônio Fiori; Leonardo Bresciani Canto
Abstract
Keywords
References
1 Liu, S., Qin, S., He, M., Zhou, D., Qin, Q., & Wang, H. (2020). Current applications of poly(lactic acid) composites in tissue engineering and drug delivery.
2 Pérez-Davila, S., Garrido-Gulías, N., González-Rodríguez, L., López-Álvarez, M., Serra, J., López-Periago, J. E., & González, P. (2023). Physicochemical properties of 3D-printed polylactic acid/hydroxyapatite scaffolds.
3 Wang, W., Zhang, B., Li, M., Li, J., Zhang, C., Han, Y., Wang, L., Wang, K., Zhou, C., Liu, L., Fan, Y., & Zhang, X. (2021). 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering.
4 Zhou, H., Lawrence, J. G., & Bhaduri, S. B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review.
5 Senatov, F. S., Niaza, K. V., Zadorozhnyy, M. Y., Maksimkin, A. V., Kaloshkin, S. D., & Estrin, Y. Z. (2016). Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
6 Ferri, J. M., Jordá, J., Montanes, N., Fenollar, O., & Balart, R. (2018). Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite.
7 Kryszak, B., Biernat, M., Tymowicz-Grzyb, P., Junka, A., Brozyna, M., Worek, M., Dzienny, P., Antonczak, A., & Szustakiewicz, K. (2023). The effect of extrusion and injection molding on physical, chemical, and biological properties of PLLA/HAp whiskers composites.
8 Watai, J. S., Calvão, P. S., Rigolin, T. R., Bettini, S. H. P., & Souza, A. M. C. (2020). Retardation effect of nanohydroxyapatite on the hydrolytic degradation of poly (lactic acid).
9 Abere, D. V., Ojo, S. A., Oyatogun, G. M., Paredes-Epinosa, M. B., Niluxsshun, M. C. D., & Hakami, A. (2022). Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: a mini review.
10 Lim, Q. R. T., Cheng, X. Y., & Wee, C. Y. (2023). An insight to the various applications of hydroxyapatite.
11 Koju, N., Niraula, S., & Fotovvati, B. (2022). Additively manufactured porous Ti6Al4V for bone implants: a review.
12 Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implants-a review.
13 Fereiduni, E., Mahmoud, D., Balbaa, M., & Elbestawi, M. (2022). Laser powder bed fusion of hydroxyapatite functionalized Ti-6Al-4V biomaterial with potential biomedical applications.
14 Sukhodub, L. F., Sukhodub, L. B., Simka, W., & Kumeda, M. (2019). Hydroxyapatite and brushite coatings on plasma electrolytic oxidized Ti6Al4V alloys obtained by the thermal substrate deposition method.
15 Vasconcelos, R. L., Oliveira, G. H. M., Amancio-Filho, S. T., & Canto, L. B. (2023). Injection overmolding of polymer-metal hybrid structures: a review.
16 Grujicic, M., Sellappan, V., Omar, M. A., Seyr, N., Obieglo, A., Erdmann, M., & Holzleitner, J. (2008). An overview of the polymer-to-metal direct-adhesion hybrid technologies for loadbearing automotive components.
17 Luiz, G. M., Oliveira, G. H. M., & Canto, L. B. (2024). Development of polyamide 6-graphene oxide nanocomposite and direct-joining with aluminum alloy for lightweight engineering applications.
18 Oliveira, G. H. M., Morozo, M. A., Fiori, M. A., & Canto, L. B. (2024). A method for manufacturing a mechanically strong and durable hybrid structure of polyethylene–hydroxyapatite composite and titanium alloy.
19 Oliveira, G. H. M., Amancio-Filho, S. T., & Canto, L. B. (2024). Processing understanding, mechanical durability and hygrothermal stability of PC/AA6061hybrid joints produced via injection overmolding.
20 Morozo, M. A., Duarte, G. W., Silva, L. L., Mello, J. M. M., Zanetti, M., Colpani, G. L., Fiori, M. A., & Canto, L. B. (2023). A Design of Experiments Approach to analyze the effects of hydroxyapatite and maleic anhydride grafted polyethylene contents on mechanical, thermal and biocompatibility properties of green high-density polyethylene-based composites.
21 Tanaka, F. H., Cruz, S. A., & Canto, L. B. (2018). Morphological, thermal and mechanical behavior of sepiolite-based poly(ethylene terephthalate)/polyamide 66 blend nanocomposites.
22 Sharifzadeh, E., & Maleki, M. (2022). An energy-based approach to study the aggregation/agglomeration phenomenon in polymer nanocomposites: dispersion force against inter-particle cohesion.
23 Benhami, V. M. L., Longatti, S. M. O., Moreira, F. M. S., & Sena Neto, A. R. (2024). Biodegradation of poly(lactic acid) waste from 3D printing.
24 Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y., & Endo, T. (2004). Thermal degradation behaviour of poly(lactic acid) stereocomplex.
25 Gonçalves, L. M. G., Rigolin, T. R., Frenhe, B. M., & Bettini, S. H. P. (2020). On the recycling of a biodegradable polymer: multiple extrusion of poly (lactic acid).
26 Backes, E. H., Pires, L. N., Costa, L. C., Passador, F. R., & Pessan, L. A. (2019). Analysis of the degradation during melt processing of PLA/Biosilicate® composites.
27 Oliveira, G. H. M, Sciuti, V. F., Canto, R. B., Arneitz, S., Minkowitz, L., Amancio-Filho, S. T., & Canto, L. B. (2024). Additive manufacturing of surface structured metal parts for high strength lightweight injection overmolded polymer-metal hybrid joints.
28 Liu, F. C., Dong, P., Lu, W., & Sun, K. (2019). On formation of Al–O–C bonds at aluminum/polyamide joint interface.