Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240095
Polímeros: Ciência e Tecnologia
Original Article

Direct-joining of a polylactide acid-hydroxyapatite biocomposite with a titanium alloy

Renan Adauto; Gean Henrique Marcatto de Oliveira; Mário Augusto Morozo; Márcio Antônio Fiori; Leonardo Bresciani Canto

Downloads: 0
Views: 68

Abstract

A promising yet underexplored alternative for biomedical applications involves incorporating polymer, metal, and ceramic materials into hybrid structures. In this study, a biocomposite consisting of polylactic acid (PLA) with 20 wt% of nearly spherical sub-micron hydroxyapatite (HA) particles was successfully synthesized. The HA particles were uniformly dispersed and distributed within the PLA matrix, leading to a biocomposite with a well-balanced combination of thermal and mechanical properties. This PLA−HA biocomposite was then directly joined through injection overmolding onto a laser-surface-structured titanium alloy Ti6Al4V substrate. The PLA−HA/Ti6Al4V hybrid joints demonstrated robust mechanical anchorage, achieved through the thorough filling of the polymer biocomposite into the micro-scale structures engineered onto the metal surface. This mechanism ensured good lap-shear strength, making these hybrid joints promising candidates for orthopedic applications.

 

 

Keywords

polymer-metal hybrids, polylactide acid, hydroxyapatite, injection overmolding

References

1 Liu, S., Qin, S., He, M., Zhou, D., Qin, Q., & Wang, H. (2020). Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Composites. Part B, Engineering, 199, 108238. http://doi.org/10.1016/j.compositesb.2020.108238.

2 Pérez-Davila, S., Garrido-Gulías, N., González-Rodríguez, L., López-Álvarez, M., Serra, J., López-Periago, J. E., & González, P. (2023). Physicochemical properties of 3D-printed polylactic acid/hydroxyapatite scaffolds. Polymers, 15(13), 2849. http://doi.org/10.3390/polym15132849. PMid:37447495.

3 Wang, W., Zhang, B., Li, M., Li, J., Zhang, C., Han, Y., Wang, L., Wang, K., Zhou, C., Liu, L., Fan, Y., & Zhang, X. (2021). 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites. Part B, Engineering, 224, 109192. http://doi.org/10.1016/j.compositesb.2021.109192.

4 Zhou, H., Lawrence, J. G., & Bhaduri, S. B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomaterialia, 8(6), 1999-2016. http://doi.org/10.1016/j.actbio.2012.01.031. PMid:22342596.

5 Senatov, F. S., Niaza, K. V., Zadorozhnyy, M. Y., Maksimkin, A. V., Kaloshkin, S. D., & Estrin, Y. Z. (2016). Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 57, 139-148. http://doi.org/10.1016/j.jmbbm.2015.11.036. PMid:26710259.

6 Ferri, J. M., Jordá, J., Montanes, N., Fenollar, O., & Balart, R. (2018). Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. Journal of Thermoplastic Composite Materials, 31(7), 865-881. http://doi.org/10.1177/0892705717729014.

7 Kryszak, B., Biernat, M., Tymowicz-Grzyb, P., Junka, A., Brozyna, M., Worek, M., Dzienny, P., Antonczak, A., & Szustakiewicz, K. (2023). The effect of extrusion and injection molding on physical, chemical, and biological properties of PLLA/HAp whiskers composites. Polymer, 287, 126428. http://doi.org/10.1016/j.polymer.2023.126428.

8 Watai, J. S., Calvão, P. S., Rigolin, T. R., Bettini, S. H. P., & Souza, A. M. C. (2020). Retardation effect of nanohydroxyapatite on the hydrolytic degradation of poly (lactic acid). Polymer Engineering and Science, 60(9), 2152-2162. http://doi.org/10.1002/pen.25459.

9 Abere, D. V., Ojo, S. A., Oyatogun, G. M., Paredes-Epinosa, M. B., Niluxsshun, M. C. D., & Hakami, A. (2022). Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: a mini review. Biomedical Engeneering Advances, 4, 100056. http://doi.org/10.1016/j.bea.2022.100056.

10 Lim, Q. R. T., Cheng, X. Y., & Wee, C. Y. (2023). An insight to the various applications of hydroxyapatite. Advanced Materials Science and Technology, 5(2), 0520879. http://doi.org/10.37155/2717-526X-0502-1.

11 Koju, N., Niraula, S., & Fotovvati, B. (2022). Additively manufactured porous Ti6Al4V for bone implants: a review. Metals, 12(4), 687. http://doi.org/10.3390/met12040687.

12 Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implants-a review. Materials (Basel), 7(12), 8168-8188. http://doi.org/10.3390/ma7128168. PMid:28788296.

13 Fereiduni, E., Mahmoud, D., Balbaa, M., & Elbestawi, M. (2022). Laser powder bed fusion of hydroxyapatite functionalized Ti-6Al-4V biomaterial with potential biomedical applications. Materials Letters, 326, 132973. http://doi.org/10.1016/j.matlet.2022.132973.

14 Sukhodub, L. F., Sukhodub, L. B., Simka, W., & Kumeda, M. (2019). Hydroxyapatite and brushite coatings on plasma electrolytic oxidized Ti6Al4V alloys obtained by the thermal substrate deposition method. Materials Letters, 250, 163-166. http://doi.org/10.1016/j.matlet.2019.05.018.

15 Vasconcelos, R. L., Oliveira, G. H. M., Amancio-Filho, S. T., & Canto, L. B. (2023). Injection overmolding of polymer-metal hybrid structures: a review. Polymer Engineering and Science, 63(3), 691-722. http://doi.org/10.1002/pen.26244.

16 Grujicic, M., Sellappan, V., Omar, M. A., Seyr, N., Obieglo, A., Erdmann, M., & Holzleitner, J. (2008). An overview of the polymer-to-metal direct-adhesion hybrid technologies for loadbearing automotive components. Journal of Materials Processing Technology, 197(1-3), 363-373. http://doi.org/10.1016/j.jmatprotec.2007.06.058.

17 Luiz, G. M., Oliveira, G. H. M., & Canto, L. B. (2024). Development of polyamide 6-graphene oxide nanocomposite and direct-joining with aluminum alloy for lightweight engineering applications. Polymer Engineering and Science, 64(2), 663-674. http://doi.org/10.1002/pen.26575.

18 Oliveira, G. H. M., Morozo, M. A., Fiori, M. A., & Canto, L. B. (2024). A method for manufacturing a mechanically strong and durable hybrid structure of polyethylene–hydroxyapatite composite and titanium alloy. Polymer Engineering and Science, 64(4), 1548-1554. http://doi.org/10.1002/pen.26644.

19 Oliveira, G. H. M., Amancio-Filho, S. T., & Canto, L. B. (2024). Processing understanding, mechanical durability and hygrothermal stability of PC/AA6061hybrid joints produced via injection overmolding. International Journal of Adhesion and Adhesives, 130, 103617. http://doi.org/10.1016/j.ijadhadh.2023.103617.

20 Morozo, M. A., Duarte, G. W., Silva, L. L., Mello, J. M. M., Zanetti, M., Colpani, G. L., Fiori, M. A., & Canto, L. B. (2023). A Design of Experiments Approach to analyze the effects of hydroxyapatite and maleic anhydride grafted polyethylene contents on mechanical, thermal and biocompatibility properties of green high-density polyethylene-based composites. Materials Research, 26(suppl. 1), e20220548. http://doi.org/10.1590/1980-5373-mr-2022-0548.

21 Tanaka, F. H., Cruz, S. A., & Canto, L. B. (2018). Morphological, thermal and mechanical behavior of sepiolite-based poly(ethylene terephthalate)/polyamide 66 blend nanocomposites. Polymer Testing, 72, 298-307. http://doi.org/10.1016/j.polymertesting.2018.10.027.

22 Sharifzadeh, E., & Maleki, M. (2022). An energy-based approach to study the aggregation/agglomeration phenomenon in polymer nanocomposites: dispersion force against inter-particle cohesion. Polymer Composites, 43(8), 5145-5158. http://doi.org/10.1002/pc.26804.

23 Benhami, V. M. L., Longatti, S. M. O., Moreira, F. M. S., & Sena Neto, A. R. (2024). Biodegradation of poly(lactic acid) waste from 3D printing. Polímeros: Ciência e Tecnologia, 34(2), e20240013. doi:10.1590/0104-1428.20230058

24 Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y., & Endo, T. (2004). Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation & Stability, 86(2), 197-208. http://doi.org/10.1016/j.polymdegradstab.2004.03.001.

25 Gonçalves, L. M. G., Rigolin, T. R., Frenhe, B. M., & Bettini, S. H. P. (2020). On the recycling of a biodegradable polymer: multiple extrusion of poly (lactic acid). Materials Research, 23(5), e20200274. http://doi.org/10.1590/1980-5373-mr-2020-0274.

26 Backes, E. H., Pires, L. N., Costa, L. C., Passador, F. R., & Pessan, L. A. (2019). Analysis of the degradation during melt processing of PLA/Biosilicate® composites. Journal of Composites Science, 3(2), 52. http://doi.org/10.3390/jcs3020052.

27 Oliveira, G. H. M, Sciuti, V. F., Canto, R. B., Arneitz, S., Minkowitz, L., Amancio-Filho, S. T., & Canto, L. B. (2024). Additive manufacturing of surface structured metal parts for high strength lightweight injection overmolded polymer-metal hybrid joints. International Journal of Adhesion and Adhesives.

28 Liu, F. C., Dong, P., Lu, W., & Sun, K. (2019). On formation of Al–O–C bonds at aluminum/polyamide joint interface. Applied Surface Science, 466, 202-209. http://doi.org/10.1016/j.apsusc.2018.10.024.
 

6825e89aa953952d7339ce93 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections