Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240091
Polímeros: Ciência e Tecnologia
Original Article

Surface modification of poly(ε-caprolactone) electrospun fibers with bone powder by DBD

Marcos Rodrigues Oliveira; Lauriene Gonçalves da Luz Silva; Brenda Jakellinny de Sousa Nolêto; Gabriely Gonçalves Lima; Renan Matos Monção; Marcos Cristino de Sousa Brito; Lucas Pereira da Silva; Ediones Maciel de Sousa; Thercio Henrique de Carvalho Costa; Fernanda Roberta Marciano; Rômulo Ribeiro Magalhães de Sousa

Downloads: 0
Views: 27

Abstract

Poly(ε-caprolactone) (PCL) is a biodegradable polyester with promising properties in tissue engineering, particularly in the creation of living structures for regenerative medicine. This study focused on the surface properties of electrospun PCL membranes combined with bone powder, treated using Dielectric Barrier Discharge (DBD) plasma in argon and atmospheric air environments. The electrospinning technique was employed for its ability to produce fibrous scaffolds that mimic the extracellular matrix, enhancing cell adhesion and proliferation. Scanning Electron Microscopy (SEM) results indicated that the morphology of the electrospun samples remained unchanged, exhibiting random fiber orientation and the presence of hydroxyapatite, although it was not fully incorporated. Infrared spectroscopy confirmed the characteristic polymer groups, and contact angle measurements demonstrated the hydrophobic nature of the films. However, increasing the plasma exposure did not entirely convert the surface to a hydrophilic state.

 

Keywords

biological, plasma, poly(ε-caprolactone), surface modification

References

1 De Geyter, N., Sarani, A., Jacobs, T., Nikiforov, A. Y., Desmet, T., & Dubruel, P. (2013). Surface modification of poly-ε-caprolactone with an atmospheric pressure plasma jet. Plasma Chemistry and Plasma Processing, 33(1), 165-175. http://doi.org/10.1007/s11090-012-9419-3.

2 Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920-926. http://doi.org/10.1126/science.8493529. PMid:8493529.

3 Wang, Y., Lu, L., Zheng, Y., & Chen, X. (2006). Improvement in hydrophilicity of PHBV films by plasma treatment. Journal of Biomedical Materials Research. Part A, 76(3), 589-595. http://doi.org/10.1002/jbm.a.30575. PMid:16278866.

4 Yildirim, E. D., Ayan, H., Vasilets, V. N., Fridman, A., Guceri, S., & Sun, W. (2008). Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly(ε-caprolactone) scaffolds. Plasma Processes and Polymers, 5(1), 58-66. http://doi.org/10.1002/ppap.200700041.

5 Lee, H.-U., Jeong, Y.-S., Jeong, S.-Y., Park, S.-Y., Bae, J.-S., Kim, H.-G., & Cho, C.-R. (2008). Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly ε-caprolactone film. Applied Surface Science, 254(18), 5700-5705. http://doi.org/10.1016/j.apsusc.2008.03.049.

6 Desmet, T., Morent, R., De Geyter, N., Leys, C., Schacht, E., & Dubruel, P. (2009). Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules, 10(9), 2351-2378. http://doi.org/10.1021/bm900186s. PMid:19655722.

7 Surucu, S., Masur, K., Turkoglu Sasmazel, H., Von Woedtke, T., & Weltmann, K. D. (2016). Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation. Applied Surface Science, 385, 400-409. http://doi.org/10.1016/j.apsusc.2016.05.123.

8 Ozkan, O., & Turkoglu Sasmazel, H. (2018). Dielectric barrier discharge and jet type plasma surface modifications of hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds. Journal of Biomaterials Applications, 32(9), 1300-1313. http://doi.org/10.1177/0885328218755571. PMid:29388455.

9 Lukmanul Hakim, S., Kusumasari, F. C., & Budianto, E. (2020). Optimization of biodegradable PLA/PCL microspheres preparation as controlled drug delivery carrier. Materials Today: Proceedings, 22(Pt 2), 306-313. http://doi.org/10.1016/j.matpr.2019.08.156.

10 Can-Herrera, L. A., Ávila-Ortega, A., de la Rosa-García, S., Oliva, A. I., Cauich-Rodríguez, J. V., & Cervantes-Uc, J. M. (2016). Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: effect of plasma power and treatment time. European Polymer Journal, 84, 502-513. http://doi.org/10.1016/j.eurpolymj.2016.09.060.

11 Zakeri, Z., Salehi, R., Mahkam, M., Siahpoush, V., Rahbarghazi, R., Sokullu, E., & Abbasi, F. (2023). Optimization of argon-air DBD plasma-assisted grafting of polyacrylic acid on electrospun POSS-PCUU. Journal of Physics and Chemistry of Solids, 178, 111311. http://doi.org/10.1016/j.jpcs.2023.111311.

12 Das, P., Ojah, N., Kandimalla, R., Mohan, K., Gogoi, D., Dolui, S. K., & Choudhury, A. J. (2018). Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 114, 1026-1032. http://doi.org/10.1016/j.ijbiomac.2018.03.115. PMid:29578008.

13 Kim, D., Thangavelu, M., Cheolui, S., Kim, H. S., Choi, M. J., Song, J. E., & Khang, G. (2019). Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. International Journal of Biological Macromolecules, 134, 749-758. http://doi.org/10.1016/j.ijbiomac.2019.04.184. PMid:31054303.

14 Sivan, M., Madheswaran, D., Asadian, M., Cools, P., Thukkaram, M., Van Der Voort, P., Morent, R., De Geyter, N., & Lukas, D. (2020). Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surface and Coatings Technology, 399, 126203. http://doi.org/10.1016/j.surfcoat.2020.126203.

15 Choi, E., Bae, S., Kim, D., Yang, G. H., Lee, K., You, H.-J., Kang, H. J., Gwak, S.-J., An, S., & Jeon, H. (2021). Characterization and intracellular mechanism of electrospun poly (ε-caprolactone) (PCL) fibers incorporated with bone-dECM powder as a potential membrane for guided bone regeneration. Journal of Industrial and Engineering Chemistry, 94, 282-291. http://doi.org/10.1016/j.jiec.2020.11.001.

16 Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., Morent, R., Hoogenboom, R., & De Geyte, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), e1800309. http://doi.org/10.1002/mabi.201800309. PMid:30353664.

17 Monrreal-Rodríguez, A. K., Garibay-Alvarado, J. A., Vargas-Requena, C. L., & Reyes-López, S. Y. (2020). In vitro evaluation of poly-ε-caprolactone-hydroxypatite-alumina electrospun fibers on the fibroblast’s proliferation. Results in Materials, 6, 100091. http://doi.org/10.1016/j.rinma.2020.100091.
 

68a71fcfa9539549b11aa344 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections