Rheo-optical characterization of polymer chain uncoil and disentanglement in shear flow
Murilo Tambolim; Sebastião Vicente Canevarolo
Abstract
Keywords
References
1 Fuller, G. G., & Leal, L. G. (1981). Flow birefringence of concentrated polymer solutions in two‐dimensional flows.
2 Frattini, P. L., & Fuller, G. G. (1984). Note: a note on phase‐modulated flow birefringence: a promising rheo‐optical method.
3 Zebrowski, B. E., & Fuller, G. G. (1985). Rheo‐optical studies of concentrated polystyrene solutions subjected to transient simple shear flow.
4 Silva, J., Santos, A. C., & Canevarolo, S. V. (2015). In-line monitoring flow in an extruder die by rheo-optics.
5 Soares, K., Santos, A. M. C., & Canevarolo, S. V. (2011). In-line rheo-polarimetry: a method to measure in real time the flow birefringence during polymer extrusion.
6 Rouse, P. E., Jr. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers.
7 Bueche, F. (1954). Influence of rate of shear on the apparent viscosity of A-Dilute Polymer Solutions, and B-Bulk polymers.
8 Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss.
9 Peticolas, W. L. (1963). Introduction to the molecular viscoelastic theory of polymers and its applications.
10 Busse, W. F. (1932). The physical structure of elastic colloids.
11 Treloar, L. R. G. (1940). Elastic recovery and plastic flow in raw rubber.
12 Flory, P. J. (1944). Network structure and the elastic properties of vulcanized rubber.
13 Buchdahl, R. (1948). Rheology of Thermoplastic Materials. I. Polystyrene.
14 Nielsen, L. E., & Buchdahl, R. (1949). Viscoelastic and photoelastic properties of polystyrene above its softening temperature.
15 Bueche, F. (1952). Viscosity, self‐diffusion, and allied effects in solid polymers.
16 Bueche, F. (1956). Viscosity of polymers in concentrated solution.
17 Berry, G. C., & Fox, T. G. (1968). The viscosity of polymers and their concentrated solutions.
18 Onogi, S., Masuda, T., & Kitagawa, K. (1970). Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes.
19 Gennes, P. G. (1971). Reptation of a polymer chain in the presence of fixed obstacles.
20 Ibar, J. P. (2012). Processing polymer melts under rheo-fluidification flow conditions, part 1: boosting shear-thinning by adding low frequency nonlinear vibration to induce strain softening.
21 Ibar, J. P. (2012). Processing polymer melts under rheo-fluidification flow conditions, part 2: simple flow simulations.
22 Wang, Y., Liu, M., Chen, J., Luo, J., Min, J., Fu, Q., & Zhang, J. (2020). Efficient disentanglement of polycarbonate melts under complex shear Field.
23 Tapadia, P., & Wang, S.-Q. (2004). Nonlinear flow behavior of entangled polymer solutions: yieldlike entanglement-disentanglement transition.
24 Li, K., & Matsuba, G. (2017). Effects of relaxation time and zero shear viscosity on structural evolution of linear low-density polyethylene in shear flow.
25 Watanabe, H., Kanaya, T., & Takahashi, Y. (2007). Rheo-SANS behavior of entangled polymer chains with local label under fast shear flow.
26 Noirez, L., Mendil-Jakani, H., & Baroni, P. (2009). New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts.
27 Wang, Z., Lam, C. N., Chen, W.-R., Wang, W., Liu, J., Liu, Y., Porcar, L., Stanley, C. B., Zhao, Z., Hong, K., & Wang, Y. (2017). Fingerprinting molecular relaxation in deformed polymers.
28 Roy, D., & Roland, C. M. (2013). Reentanglement kinetics in polyisobutylene.
29 Ibar, J. P. (2015). Trouble with polymer physics: development of “sustained orientation” contradicts the current understanding of the liquid state of polymers.
30 Fu, J., Wang, Y., Shen, K., Fu, Q., & Zhang, J. (2019). Insight Into Shear‐Induced Modification for Improving Processability of Polymers: effect of shear rate on the evolution of entanglement state.
31 Okada, Y., Urakawa, O., & Inoue, T. (2016). Reliability of intrinsic birefringence estimated via the modified stress-optical rule.
32 Vasconcelos, R. L. (2019).
33 Berek, M. (1913).
34 Vasconcelos, R. L., & Canevarolo, S. V. (2020). Rheo-optical characterization of dilute polymer mixtures under shear flow.
35 Bernardo, F. O. C. (2022).
36 Andreev, M., Khaliullin, R. N., Steenbakkers, R. J. A., & Schieber, J. D. (2013). Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions.
37 Ianniruberto, G., & Marrucci, G. (2014). Convective constraint release (CCR) revisited.
38 Nafar Sefiddashti, M. H., Edwards, B. J., & Khomami, B. (2016). Steady shearing flow of a moderately entangled polyethylene liquid.
39 Dolata, B. E., & Olmsted, P. D. (2023). A thermodynamically consistent constitutive equation describing polymer disentanglement under flow.
40 Liu, M., Wang, Y., Chen, J., Luo, J., Fu, Q., & Zhang, J. (2020). The retarded recovery of disentangled state by blending hdpe with ultra-high molecular weight polyethylene.
41 Litvinov, V., Christakopoulos, F., & Lemstra, P. J. (2024). Disentangled melt of ultrahigh-molecular-weight polyethylene: fictitious or real?