NanoSSIEFARL polymeric nanoparticles-based immunotherapeutic for the treatment of genital herpes
Renata Zorzetto; Flávia Pires Peña; Aline Cláudio de Oliveira; Jayme de Castilhos Ferreira Neto; Gabriel Tardin Mota Hilario; Fernanda Teresa Bovi Frozza; Marvin Paulo Lins; Fernanda Poletto; Marcelo Jung Eberhardt; Pedro Roosevelt Torres Romão; Tanira Alessandra Silveira Aguirre; Luiz Carlos Rodrigues Junior
Abstract
Keywords
References
1 Gupta, R., Warren, T., & Wald, A. (2007). Genital herpes.
2 Looker, K. J., & Garnett, G. P. (2005). A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2.
3 Looker, K. J., Magaret, A. S., May, M. T., Turner, K. M. E., Vickerman, P., Gottlieb, S. L., & Newman, L. M. (2015). Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012.
4 Perng, G. C., & Jones, C. (2010). Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle.
5 Garner, J. A. (2003). Herpes simplex virion entry into and intracellular transport within mammalian cells.
6 Frank, G. M., Lepisto, A. J., Freeman, M. L., Sheridan, B. S., Cherpes, T. L., & Hendricks, R. L. (2010). Early CD4 + T cell help prevents partial CD8 + T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency.
7 St. Leger, A. J., Peters, B., Sidney, J., Sette, A., & Hendricks, R. L. (2011). Defining the herpes simplex virus-specific CD8 + T cell repertoire in C57BL/6 mice.
8 Treat, B. R., Bidula, S. M., Ramachandran, S., St Leger, A. J., Hendricks, R. L., & Kinchington, P. R. (2017). Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells.
9 Treat, B. R., Bidula, S. M., St. Leger, A. J., Hendricks, R. L., & Kinchington, P. R. (2020). Herpes simplex virus 1-specific CD8+ T cell priming and latent ganglionic retention are shaped by viral epitope promoter kinetics.
10 Koelle, D. M., Dong, L., Jing, L., Laing, K. J., Zhu, J., Jin, L., Selke, S., Wald, A., Varon, D., Huang, M.-L., Johnston, C., Corey, L., & Posavad, C. (2022). HSV-2-specific human female reproductive tract tissue resident memory t cells recognize diverse HSV antigens.
11 Reardon, J. E., & Spector, T. (1989). Herpes simplex virus type 1 DNA polymerase: mechanism of inhibition by acyclovir triphosphate.
12 Kost, R. G., Hill, E. L., Tigges, M., & Straus, S. E. (1993). Recurrent acyclovir-resistant genital herpes in an immunocompetent patient.
13 Kimberlin, D. W., Crumpacker, C. S., Straus, S. E., Biron, K. K., Drew, W. L., Hayden, F. G., McKinlay, M., Richman, D. D., & Whitley, R. J. (1995). Antiviral resistance in clinical practice.
14 Hanke, T., Graham, F. L., Rosenthal, K. L., & Johnson, D. C. (1991). Identification of an immunodominant cytotoxic T-lymphocyte recognition site gB of herpes simplex virus by using recombnant adenovirus vectors.
15 Çuburu, N., Kim, R., Guittard, G. C., Thompson, C. D., Day, P. M., Hamm, D. E., Pang, Y.-Y. S., Graham, B. S., Lowy, D. R., & Schiller, J. T. (2019). A prime-pull-amplify vaccination strategy to maximize induction of circulating and genital-resident intraepithelial CD8 + memory T cells.
16 Schaffazick, S. R., Guterres, S. S., Freitas, L. L., & Pohlmann, A. R. (2003). Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos.
17 Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems.
18 Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer: polycaprolactone in the 21st century.
19 Limayem Blouza, I., Charcosset, C., Sfar, S., & Fessi, H. (2006). Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use.
20 Fiel, L. A., Contri, R. V., Bica, J. F., Figueiró, F., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2014). Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies.
21 Oliveira, J. V. R., Silveira, P. L., Spingolon, G., Alves, G. A. L., Peña, F. P., & Aguirre, T. A. S. (2023). Polymeric nanoparticles containing babassu oil: a proposed drug delivery system for controlled release of hydrophilic compounds.
22 Reis, M. Y. F. A., Santos, S. M., Silva, D. R., Silva, M. V., Correia, M. T. S., Ferraz Navarro, D. M. A., Santos, G. K. N., Hallwass, F., Bianchi, O., Silva, A. G., Melo, J. V., Mattos, A. B., Ximenes, R. M., Machado, G., & Saraiva, K. L. A. (2017). Anti-inflammatory activity of babassu oil and development of a microemulsion system for topical delivery.
23 Intahphuak, S., Khonsung, P., & Panthong, A. (2010). Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.
24 Campos, J. L. A., Silva, T. L. L., Albuquerque, U. P., Peroni, N., & Araújo, E. L. (2015). Knowledge, use, and management of the Babassu Palm (Attalea speciosa Mart. ex Spreng) in the Araripe Region (Northeastern Brazil).
25 Santos, L., & Loschi, M. (2019). Quebradeiras de coco babaçu preservam tradição no interior do Maranhão.
26 Rodrigues, E. C. R., Ferreira, A. M., Vilhena, J. C. E., Almeida, F. B., Cruz, R. A. S., Amado, J. R. R., Florentino, A. C., Carvalho, J. C. T., & Fernandes, C. P. (2014). Development of babassu oil based nanoemulsions.
27 Plaza-Oliver, M., Santander-Ortega, M. J., & Lozano, M. V. (2021). Current approaches in lipid-based nanocarriers for oral drug delivery.
28 Leyva-Gómez, G., Piñón-Segundo, E., Mendoza-Muñoz, N., Zambrano-Zaragoza, M. L., Mendoza-Elvira, S., & Quintanar-Guerrero, D. (2018). Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art.
29 Poletto, F. S., Fiel, L. A., Lopes, M. V., Schaab, G., Gomes, A., Guterres, S. S., Rossi-Bergmann, B., & Pohlmann, A. R. (2012). Fluorescent-labeled poly(ε-caprolactone) lipid-core nanocapsules: synthesis, physicochemical properties and macrophage uptake.
30 Hilario, G. M., Sulczewski, F. B., Liszbinski, R., Mello, L. D., Hagen, G., Fazolo, T., Neto, J., Dallegrave, E., Romão, P., Aguirre, T., & Rodrigues, L. C., Jr. (2021). Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus.
31 International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. (2005).
32 Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Diretoria Colegiada. (2017, 25 de julho).
33 Justus, B., Kanunfre, C. C., Budel, J. M., Faria, M. F., Raman, V., Paula, J. P., & Farago, P. V. (2019). New insights into the mechanisms of French lavender essential oil on non-small-cell lung cancer cell growth.
34 Lopes, C. E., Langoski, G., Klein, T., Ferrari, P. C., & Farago, P. V. (2017). A simple hplc method for the determination of halcinonide in lipid nanoparticles: development, validation, encapsulation efficiency, and in vitro drug permeation.
35 Sutariya, V., Wehrung, D., & Geldenhuys, W. J. (2012). Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione.
36 Chaudhari, S. P., & Dugar, R. P. (2017). Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs.
37 Patel, A., Patel, M., Yang, X., & Mitra, A. (2014). Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles.
38 Kim, M. R., Feng, T., Zhang, Q., Chan, H. Y. E., & Chau, Y. (2019). Co-encapsulation and co-delivery of peptide drugs via polymeric nanoparticles.
39 McClements, D. J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review.
40 Falciani, C., Zevolini, F., Brunetti, J., Riolo, G., Gracia, R., Marradi, M., Loinaz, I., Ziemann, C., Cossío, U., Llop, J., Bracci, L., & Pini, A. (2020). Antimicrobial peptide-loaded nanoparticles as inhalation therapy for
41 Casciaro, B., d’Angelo, I., Zhang, X., Loffredo, M. R., Conte, G., Cappiello, F., Quaglia, F., Di, Y.-P. P., Ungaro, F., & Mangoni, M. L. (2019). Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against
42 Frank, L. A., Contri, R. V., Beck, R. C. R., Pohlmann, A. R., & Guterres, S. S. (2015). Improving drug biological effects by encapsulation into polymeric nanocapsules.
43 Frank, L. A., Sandri, G., D’Autilia, F., Contri, R. V., Bonferoni, M. C., Caramella, C., Frank, A. G., Pohlmann, A. R., & Guterres, S. S. (2014). Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery.
44 Frank, L. A., Chaves, P. S., D’Amore, C. M., Contri, R. V., Frank, A. G., Beck, R. C. R., Pohlmann, A. R., Buffon, A., & Guterres, S. S. (2017). The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: increasing penetration and adhesion of imiquimod in vaginal tissue.
45 Harshyne, L. A., Watkins, S. C., Gambotto, A., & Barratt-Boyes, S. M. (2001). Dendritic cells acquire antigens from live cells for cross-presentation to CTL.
46 Nayak, J. V., Hokey, D. A., Larregina, A., He, Y., Salter, R. D., Watkins, S. C., & Falo, L. D., Jr. (2006). Phagocytosis induces lysosome remodeling and regulated presentation of particulate antigens by activated dendritic cells.
47 Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles.