Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Development by extrusion of composite films based on Poly(Lactic Acid)/Babassu Mesocarp Flour

Lucas Rafael Carneiro da Silva; Railha Antunes de França; Raquel do Nascimento Silva; Tatianny Soares Alves; Renata Barbosa; Alessandro de Oliveira Rios; Ruth Marlene Campomanes Santana

Downloads: 0
Views: 140


The objective of this manuscript was to investigate the influence of different Babassu Mesocarp Flour (BMF) contents (3, 5, 8, and 10% by weight) on the physical and surface properties of the Poly(Lactic Acid) (PLA) matrix. For this purpose, composite films were produced through flat-die extrusion processing. Visual analysis showed that the films were successfully produced by this processing method and exhibited good handling. The physical properties of the films varied as follows: width (16.41‒20.38 cm), thickness (0.14‒0.24 mm), apparent density (0.78‒1.07 g/cm3), and grammage (168.34‒255.31 g/m2). Through optical microscopy, good distribution and dispersion of the particles were observed despite the presence of some agglomerates. The film surface became rough due to the incorporated flour content, which influenced the contact angle result. The combination of PLA/BMF for producing composite films has technological potential, enabling the valorization of an industrial by-product and preserving the environment.




Babassu Mesocarp Flour, composite films, flat-die extrusion, packaging, Poly(Lactic Acid)


1 Vidal, O. L., Santos, M. C. B., Batista, A. P., Andrigo, F. F., Baréa, B., Lecomte, J., Figueroa-Espinoza, M. C., Gontard, N., Villeneuve, P., Guillard, V., Rezende, C. M., Bourlieu-Lacanal, C., & Ferreira, M. S. L. (2022). Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. Journal of Food Engineering, 312, 110744. http://dx.doi.org/10.1016/j.jfoodeng.2021.110744.

2 Flores-Silva, P. C., Hernández-Hernández, E., Sifuentes-Nieves, I., Lara-Sánchez, J. F., Ledezma-Pérez, A. S., Alvarado-Canché, C. N., & Ramírez-Vargas, E. (2023). Active mono-material films from natural and post-consumer recycled polymers with essential oils for food packaging applications. Journal of Polymers and the Environment, 31(12), 5198-5209. http://dx.doi.org/10.1007/s10924-023-02943-6.

3 United Nations Environment Programme. (2021). Annual Report 2021. Kenya: UNEP. Retrieved in 2023, December 21, from https://www.unep.org/annualreport/2021/index.php

4 Chen, C., Chen, W., Dai, F., Yang, F., & Xie, J. (2022). Development of packaging films with gas selective permeability based on Poly(butylene Adipate-co-terephthalate)/Poly(butylene Succinate) and its application in the storage of white mushroom (Agaricus bisporus). Food and Bioprocess Technology, 15(6), 1268-1283. http://dx.doi.org/10.1007/s11947-022-02794-4.

5 Raza, Z. A., & Anwar, F. (2018). Fabrication of poly(lactic acid) incorporated chitosan nanocomposites for enhanced functional polyester fabric. Polímeros: Ciência e Tecnologia, 28(2), 120-12. http://dx.doi.org/10.1590/0104-1428.11216.

6 Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Bhagia, M., Yoo, C. G., Zhao, X., Kunc, V., Pu, Y., Ozcan, S., & Ragauskas, A. J. (2021). Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 24, 101078. http://dx.doi.org/10.1016/j.apmt.2021.101078.

7 Barbosa, J. D. V., Azevedo, J. B., Araújo, E. M., Machado, B. A. S., Hodel, K. V. S., & Mélo, T. J. A. (2019). Bionanocomposites of PLA/PBAT/organophilic clay: preparation and characterization. Polímeros: Ciência e Tecnologia, 29(3), e2019045. http://dx.doi.org/10.1590/0104-1428.09018.

8 Raj, S. S., Kannan, T. K., & Rajasekar, R. (2020). Influence of prosopis juliflora wood flour in poly lactic acid – developing a novel bio-wood plastic composite. Polímeros: Ciência e Tecnologia, 30(1), e2020012. http://dx.doi.org/10.1590/0104-1428.00120.

9 Protásio, T. P., Trugilho, P. F., César, A. A. S., Napoli, A., Melo, I. C. N. A., & Silva, M. G. (2014). Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil. SpringerPlus, 3(1), 124. http://dx.doi.org/10.1186/2193-1801-3-124. PMid:24741469.

10 Yapuchura, E. R., Tartaglia, R. S., Cunha, A. G., Freitas, J. C. C., & Emmerich, F. G. (2019). Observation of the transformation of silica phytoliths into SiC and SiO2 particles in biomass-derived carbons by using SEM/EDS, Raman spectroscopy, and XRD. Journal of Materials Science, 54(5), 3761-3777. http://dx.doi.org/10.1007/s10853-018-3130-6.

11 Silva, L. R. C., Alves, T. S., Barbosa, R., Dal Pont Morisso, F., Rios, A. O., & Santana, R. M. C. (2023). Characterization of babassu mesocarp flour as potential bio-reinforcement for Poly (Lactic Acid). Journal of Food Industry, 7(1), 24-53. http://dx.doi.org/10.5296/jfi.v7i1.21066.

12 Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. http://dx.doi.org/10.1016/j.carbpol.2017.01.031. PMid:28325309.

13 Cao, C., Wang, Y., Zheng, S., Zhang, J., Li, W., Li, B., Guo, R., & Yu, J. (2020). Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. Lebensmittel-Wissenschaft + Technologie, 132, 109874. http://dx.doi.org/10.1016/j.lwt.2020.109874.

14 Rosato, D. V., Rosato, D. V., & Rosato, M. V. (2004). Plastic product material and process selection handbook. UK: Elsevier Advanced Technology. http://dx.doi.org/10.1016/B978-1-85617-431-2.X5000-2.

15 Giles, H. F., Jr., Mount, E. M., 3rd, & Wagner, J. R., Jr. (2004). Extrusion: the definitive processing guide and handbook. USA: William Andrew.

16 Dhadwal, R., Banik, S., Doshi, P., & Pol, H. (2017). Effect of viscoelastic relaxation modes on stability of extrusion film casting process modeled using multi-mode Phan-Thien-Tanner constitutive equation. Applied Mathematical Modelling, 47, 487-500. http://dx.doi.org/10.1016/j.apm.2017.03.010.

17 Barlow, C. Y., & Morgan, D. C. (2013). Polymer film packaging for food: an environmental assessment. Resources, Conservation and Recycling, 78, 74-80. http://dx.doi.org/10.1016/j.resconrec.2013.07.003.

18 Guimarães, B. M. R., Scatolino, M. V., Martins, M. A., Ferreira, S. R., Mendes, L. M., Lima, J. T., Guimarães, M., Jr., & Tonoli, G. H. D. (2022). Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials. Environmental Science and Pollution Research International, 29(6), 8665-8683. http://dx.doi.org/10.1007/s11356-021-16203-4. PMid:34490567.

19 Bechert, M. (2020). Non-Newtonian effects on draw resonance in film casting. Journal of Non-Newtonian Fluid Mechanics, 279, 104262. http://dx.doi.org/10.1016/j.jnnfm.2020.104262.

20 Ahmed, S., & Ikram, S. (2016). Chitosan and gelatin based biodegradable packaging films with UV-light protection. Journal of Photochemistry and Photobiology. B, Biology, 163, 115-124. http://dx.doi.org/10.1016/j.jphotobiol.2016.08.023. PMid:27560490.

21 Harms, S., Rätzke, K., Faupel, F., Schneider, G. J., Willner, L., & Richter, D. (2010). Free volume of interphases in model nanocomposites studied by positron annihilation lifetime spectroscopy. Macromolecules, 43(24), 10505-10511. http://dx.doi.org/10.1021/ma1022692.

22 Bilck, A. P., Grossmann, M. V. E., & Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29(4), 471-476. http://dx.doi.org/10.1016/j.polymertesting.2010.02.007.

23 Albuquerque, M. D. F., Bastos, D. C., Ţălu, Ş., Matos, R. S., Pires, M. A., Salerno, M., Fonseca Filho, H. D., & Simão, R. A. (2022). Vapor barrier properties of cold plasma treated corn starch films. Coatings, 12(7), 1006. http://dx.doi.org/10.3390/coatings12071006.

24 Bhushan, B. (2000). Surface roughness analysis and measurement techniques. In B. Bhushan (Ed.), Modern tribology handbook (pp. 79-150). USA: CRC Press. http://dx.doi.org/10.1201/9780849377877-10.

25 Waduge, R. N., Xu, S., & Seetharaman, K. (2010). Iodine absorption properties and its effect on the crystallinity of developing wheat starch granules. Carbohydrate Polymers, 82(3), 786-794. http://dx.doi.org/10.1016/j.carbpol.2010.05.053.

26 Kasai, D., Chougale, R., Masti, S., Chalannavar, R., Malabadi, R. B., Gani, R., & Gouripur, G. (2019). An investigation into the influence of filler piper nigrum leaves extract on physicochemical and antimicrobial properties of Chitosan/Poly (Vinyl Alcohol) blend films. Journal of Polymers and the Environment, 27(3), 472-488. http://dx.doi.org/10.1007/s10924-018-1353-x.

27 Esmaeili, M., Pircheraghi, G., Bagheri, R., & Altstädt, V. (2019). Poly(lactic acid)/coplasticized thermoplastic starch blend: effect of plasticizer migration on rheological and mechanical properties. Polymers for Advanced Technologies, 30(4), 839-851. http://dx.doi.org/10.1002/pat.4517.

660c494da953957ae048a035 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections