Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230100
Polímeros: Ciência e Tecnologia
Original Article

Bio-high density polyethylene films embedded with organoclay and zinc pyrithione

Priscylla Jordânia Pereira de Mesquita; Cristiano José de Farias Braz; Tatianny Soares Alves; Renata Barbosa

Downloads: 1
Views: 525

Abstract

Bio-high density polyethylene (BHDPE) films with organoclay and antimicrobial additives (zinc pyrithione) were evaluated. The composites were prepared in a single-screw extruder using the melt intercalation technique, and the films were obtained by flat extrusion. The diffractograms indicated the formation of an intercalated nanocomposite (BHDPE/6 wt% of clay). Infrared spectra suggested that the polymer predominates over the antimicrobial agent bands. Thermal stability was slightly reduced by up to 3°C. The clay and antimicrobial agent reduced the melting point and crystallinity of BHDPE by up to 12 °C and 13.3%, respectively. In addition, the presence of clay and antimicrobial agent significantly (p < 0.05) affected all mechanical properties. Proliferation of Staphylococcus aureus demonstrated that both evaluated additives did not significantly (p > 0.05) inhibit microbial growth. The results emphasize a promising application of the films for packaging that does not require antimicrobial control, with films highlighted by 6 wt% of clay.

 

 

Keywords

cloisite 20a®, flat films, microbial activity

References

1 Sima, V., Gheorghe, I. G., Subić, J., & Nancu, D. (2020). Influences of the Industry 4.0 revolution on the human capital development and consumer behavior: a systematic review. Sustainability (Basel), 12(10), 4035. http://dx.doi.org/10.3390/su12104035.

2 Angelopoulou, P., Giaouris, E., & Gardikis, K. (2022). Applications and prospects of nanotechnology in food and cosmetics preservation. Nanomaterials (Basel, Switzerland), 12(7), 1196. http://dx.doi.org/10.3390/nano12071196. PMid:35407315.

3 Siracusa, V., & Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. http://dx.doi.org/10.3390/polym12081641. PMid:32718011.

4 Porta, R., Sabbah, M., & Di Pierro, P. (2020). Biopolymers as food packaging materials. International Journal of Molecular Sciences, 21(14), 4942. http://dx.doi.org/10.3390/ijms21144942. PMid:32668678.

5 Vilas, C., Mauricio-Iglesias, M., & García, M. R. (2020). Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life, 24, 100446. http://dx.doi.org/10.1016/j.fpsl.2019.100446.

6 Galli, R., Hall, M. C., Breitenbach, E. R., Colpani, G. L., Zanetti, M., Mello, J. M. M., Silva, L. L., & Fiori, M. A. (2020). Antibacterial polyethylene - Ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles. Polymer Testing, 89, 106554. http://dx.doi.org/10.1016/j.polymertesting.2020.106554.

7 Echeverria, C. A., Ozkan, J., Pahlevani, F., Willcox, M., & Sahajwalla, V. (2020). Multifunctional marine bio-additive with synergistic effect for non-toxic flame-retardancy and anti-microbial performance. Sustainable Materials and Technologies, 25, e00199. http://dx.doi.org/10.1016/j.susmat.2020.e00199.

8 Li, Z., Wang, S., Yang, X., Liu, H., Shan, Y., Xu, X., Shang, S., & Song, Z. (2020). Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization. Applied Surface Science, 530, 147193. http://dx.doi.org/10.1016/j.apsusc.2020.147193.

9 Scaffaro, R., Lopresti, F., Marino, A., & Nostro, A. (2018). Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Applied Microbiology and Biotechnology, 102(18), 7739-7756. http://dx.doi.org/10.1007/s00253-018-9220-1. PMid:30009322.

10 Furko, M., Balázsi, K., & Balázsi, C. (2023). Calcium phosphate loaded biopolymer composites - a comprehensive review on the most recent progress and promising trends. Coatings, 13(2), 360. http://dx.doi.org/10.3390/coatings13020360.

11 Dehghani, S., Peighambardoust, S. H., Peighambardoust, S. J., Hosseini, S. V., & Regenstein, J. M. (2019). Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Packaging and Shelf Life, 22, 100391. http://dx.doi.org/10.1016/j.fpsl.2019.100391.

12 Bujdáková, H., Bujdáková, V., Májeková-Koščová, H., Gaálová, B., Bizovská, V., Boháč, P., & Bujdák, J. (2018). Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Applied Clay Science, 158, 21-28. http://dx.doi.org/10.1016/j.clay.2018.03.010.

13 Skoura, E., Boháč, P., Barlog, M., Pálková, H., Mautner, A., Bugyna, L., Bujdáková, H., & Bujdák, J. (2023). Structure, photoactivity, and antimicrobial properties of phloxine B / poly(caprolactone) nanocomposite thin films. Applied Clay Science, 242, 107037. http://dx.doi.org/10.1016/j.clay.2023.107037.

14 Nasrollahzadeh, M., Shafiei, N., Baran, T., Pakzad, K., Tahsili, M. R., Baran, N. Y., & Shokouhimehr, M. (2021). Facile synthesis of Pd nanoparticles supported on a novel Schiff base modified chitosan-kaolin: antibacterial and catalytic activities in Sonogashira coupling reaction. Journal of Organometallic Chemistry, 945, 121849. http://dx.doi.org/10.1016/j.jorganchem.2021.121849.

15 Nozha, S. G., Morgan, S. M., Ahmed, S. E. A., El-Mogazy, M. A., Diab, M. A., El-Sonbati, A. Z., & Abou-Dobara, M. I. (2021). Polymer complexes. LXXIV. Synthesis, characterization and antimicrobial activity studies of polymer complexes of some transition metals with bis-bidentate Schiff base. Journal of Molecular Structure, 1227, 129525. http://dx.doi.org/10.1016/j.molstruc.2020.129525.

16 Li, W., Chen, M., Li, Y., Sun, J., Liu, Y., & Guo, H. (2020). Improving mildew resistance of soy meal by nano-Ag/TiO2, Zinc Pyrithione and 4-Cumylphenol. Polymers, 12(1), 169. http://dx.doi.org/10.3390/polym12010169. PMid:31936509.

17 Official Journal of the European Union. (2021). Commission Regulation (EU) 2021/1902 of 29 October 2021. Annexes II, III and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council as regards the use in cosmetic products of certain substances classified as carcinogenic, mutagenic or toxic for reproduction. Retrieved in 2023, November 13, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1902&from=EN

18 Food and Drug Administration – FDA. (2023). Inventory of Effective Food Contact Substance (FCS) Notifications. Retrieved in 2023, November 13, from https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FCN&id=2139&sort=FCN_No&order=DESC&startrow=1&type=basic&search=Pyrithione

19 Marcous, A., Rasouli, S., & Ardestani, F. (2017). Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia coli O157:H7 in fresh calf minced meat. Packaging Technology & Science, 30(11), 693-701. http://dx.doi.org/10.1002/pts.2312.

20 Rokbani, H., Daigle, F., & Ajji, A. (2019). Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging. Journal of Plastic Film & Sheeting, 35(2), 117-134. http://dx.doi.org/10.1177/8756087918822677.

21 Hong, S.-I., Wang, L.-F., & Rhim, J.-W. (2022). Preparation and characterization of nanoclays-incorporated polyethylene/thermoplastic starch composite films with antimicrobial activity. Food Packaging and Shelf Life, 31, 100784. http://dx.doi.org/10.1016/j.fpsl.2021.100784.

22 Fasihnia, S. H., Peighambardoust, S. H., & Peighambardoust, S. J. (2018). Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. Journal of Food Processing and Preservation, 42(2), e13488. http://dx.doi.org/10.1111/jfpp.13488.

23 Peighambardoust, S. H., Beigmohammadi, F., & Peighambardoust, S. J. (2016). Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese. Packaging Technology & Science, 29(7), 355-363. http://dx.doi.org/10.1002/pts.2212.

24 Sanitized®. (2013, May 24). MB PE 23-70 Protects thermoplastic polymers against. Burgdorf, Switzerland: Sanitized®.

25 Mesquita, P. J. P., Alves, T. S., & Barbosa, R. (2022). Development and characterization of green polyethylene/clay/antimicrobial additive nanocomposites. Polímeros, 32(2), e2022022. http://dx.doi.org/10.1590/0104-1428.20210097.

26 Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D. N., Chrissafis, K., & Vourlias, G. (2023). Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. Journal of Materials Science, 58(4), 1621-1639. http://dx.doi.org/10.1007/s10853-022-08125-4.

27 Wunderlich, B., & Czornyj, G. (1977). A study of equilibrium melting of polyethylene. Macromolecules, 10(5), 906-913. http://dx.doi.org/10.1021/ma60059a006.

28 Nurazzi, N. M., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R., Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S., & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments. Polymers, 13(16), 2710. http://dx.doi.org/10.3390/polym13162710. PMid:34451248.

29 American Society for Testing and Materials – ASTM. (2018). ASTM D-882: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Philadelphia, USA: ASTM International. Retrieved in 2023, November 13, from https://www.astm.org/d0882-18.html

30 Clinical and Laboratory Standards Institute – CSLI. (2023). M100: Performance Standards for Antimicrobial Susceptibility Testing. Malvern, Pennsylvania, USA: CSLI. Retrieved in 2023, November 13, from https://clsi.org/about/press-releases/clsi-publishes-m100-performance-standards-for-antimicrobial-susceptibility-testing-33rd-edition/

31 Clinical and Laboratory Standards Institute – CSLI. (2018). M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Malvern, Pennsylvania, USA: CSLI. Retrieved in 2023, November 13, from https://clsi.org/media/1928/m07ed11_sample.pdf

32 Paiva, L. B., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: properties, preparation and applications. Applied Clay Science, 42(1-2), 8-24. http://dx.doi.org/10.1016/j.clay.2008.02.006.

33 Dias, G., Prado, M., Ligabue, R., Poirier, M., Le Roux, C., Micoud, P., Martin, F., & Einloft, S. (2018). Hybrid PU/synthetic talc/organic clay ternary nanocomposites: thermal, mechanical and morphological properties. Polymers & Polymer Composites, 26(2), 127-140. http://dx.doi.org/10.1177/096739111802600201.

34 Roy, A., Joshi, M., & Butola, B. S. (2019). Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids and Surfaces. B, Biointerfaces, 178, 87-93. http://dx.doi.org/10.1016/j.colsurfb.2019.02.045. PMid:30844564.

35 Jung, M. R., Horgen, F. D., Orski, S. V., & Rodriguez, C. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704-716. http://dx.doi.org/10.1016/j.marpolbul.2017.12.061. PMid:29475714.

36 Stark, N. M., & Matuana, L. M. (2004). Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer Degradation & Stability, 86(1), 1-9. http://dx.doi.org/10.1016/j.polymdegradstab.2003.11.002.

37 Terui, Y., & Hirokawa, K. (1994). Fourier transform infrared emission spectra of poly(vinyl acetate) enhanced by the island structure of gold. Vibrational Spectroscopy, 6(3), 309-314. http://dx.doi.org/10.1016/0924-2031(93)E0065-A.

38 Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., & Yang, M. (2005). Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polymer Degradation & Stability, 87(1), 183-189. http://dx.doi.org/10.1016/j.polymdegradstab.2004.08.005.

39 Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Vázquez-Torres, H., Garfias-Mesías, L. F., & Paul, D. R. (2007). Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochimica Acta, 457(1), 92-102. http://dx.doi.org/10.1016/j.tca.2007.03.008.

40 Zhang, J., Gupta, R. K., & Wilkie, C. A. (2006). Controlled silylation of montmorillonite and its polyethylene nanocomposites. Polymer, 47(13), 4537-4543. http://dx.doi.org/10.1016/j.polymer.2006.04.057.

41 Naderi-Samani, H., Razavi, R. S., Loghman-Estarki, M. R., Ramazani, M., Barekat, M., Mishra, A. K., & Fattahi, H. (2019). The effects of Cloisite 20A content on the adhesion strength and corrosion behavior of poly (amide-imide)/cloisite 20A nanocomposite coatings. Composites. Part B, Engineering, 175, 107154. http://dx.doi.org/10.1016/j.compositesb.2019.107154.

42 Pittol, M., Tomacheski, D., Simões, D. N., Ribeiro, V. F., & Santana, R. M. C. (2017). Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Materials Research, 20(5), 1266-1273. http://dx.doi.org/10.1590/1980-5373-mr-2017-0137.

43 Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. http://dx.doi.org/10.1016/j.matdes.2014.12.027.

44 Pu, S., Hao, Y.-B., Dai, X.-X., Zhang, P.-P., Zeng, J.-B., & Wang, M. (2017). Morphological, rheological, crystalline and mechanical properties of ethylene-vinyl acetate copolymer/linear low-density polyethylene/amphiphilic graphene oxide nanocomposites. Polymer Testing, 63, 289-297. http://dx.doi.org/10.1016/j.polymertesting.2017.08.028.

45 Vozniak, A., & Bartczak, Z. (2022). Plastic deformation of high density polyethylene with extended-chain crystal morphology. Polymers, 15(1), 66. http://dx.doi.org/10.3390/polym15010066. PMid:36616416.

46 Adediran, A. A., Akinwande, A. A., Balogun, O. A., Olasoju, O. S., & Adesina, O. S. (2021). Experimental evaluation of bamboo fiber/particulate coconut shell hybrid PVC composite. Scientific Reports, 11(1), 5465. http://dx.doi.org/10.1038/s41598-021-85038-3. PMid:33750871.

47 Dadashov, S., Demirel, E., & Suvaci, E. (2022). Tailoring microstructure of polysulfone membranes via novel hexagonal ZnO particles to achieve improved filtration performance. Journal of Membrane Science, 651, 120462. http://dx.doi.org/10.1016/j.memsci.2022.120462.

48 Santos, M. S., Montagna, L. S., Rezende, M. C., & Passador, F. R. (2019). A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications. Journal of Applied Polymer Science, 136(11), 47204. http://dx.doi.org/10.1002/app.47204.

49 Sonia, P., Jain, J. K., Singhal, P., & Saxena, K. K. (2021). Performance evaluation of hybrid polymer nanocomposite. Materials Today: Proceedings, 44(Part 1), 1659-1663. http://dx.doi.org/10.1016/j.matpr.2020.11.826.

50 Savini, G., & Oréfice, R. L. (2021). Super ductility in HDPE/EVA blends triggered by synthetic amorphous nanotalc. Journal of Polymer Research, 28(1), 19. http://dx.doi.org/10.1007/s10965-020-02389-7.

51 Xiao, L., Sun, J., Liu, L., Hu, R., Lu, H., Cheng, C., Huang, Y., Wang, S., & Geng, J. (2017). Enhanced photothermal bactericidal activity of the reduced graphene oxide modified by cationic water-soluble conjugated polymer. ACS Applied Materials & Interfaces, 9(6), 5382-5391. http://dx.doi.org/10.1021/acsami.6b14473. PMid:28112908.

52 Worasith, N., & Goodman, B. A. (2023). Clay mineral products for improving environmental quality. Applied Clay Science, 242, 106980. http://dx.doi.org/10.1016/j.clay.2023.106980.
 

660c499aa953957bb7548c12 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections