Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230084
Polímeros: Ciência e Tecnologia
Original Article

Nanocellulose reinforced starch biocomposite films via tape-casting technique

Giovana Ladislau Garuti; Roberta Ranielle Matos de Freitas; Vitor Hugo de Lima; Karina Palmizani do Carmo; Franciane Andrade de Pádua; Vagner Roberto Botaro

Downloads: 0
Views: 125

Abstract

The objective of this study was to characterize the physicochemical-mechanical properties of corn and cassava starch films reinforced with CNF via Tape-Casting. There were differences in size and shape of the starch granules. Corn starch nanocomposites (NCO) showed a significant increase in tensile strength (5.14 to 25.58 MPa) and significant decrease in strain (24.81 to 2.76%) as the CNF concentration increased. Among the cassava starch nanocomposites (NCA), only the cassava starch sample with 1% CNF (NCA-1) showed significant difference both in the maximum stress (4.94 MPa) and strain (15.17%). The corn starch sample with 2% of CNF (NCO-2) presented a lower roughness and NCA-1 a smooth surface. There was no difference in chemical composition between the samples. The CNF-free starch films showed more transparency than other films. The NCA showed more transparency than NCO. Tape-casting technique unveils enhanced mechanical properties of cellulose nanofiber-reinforced starch films. Starch nanocomposites exhibit improved tensile strength and surface characteristics.

 

 

Keywords

nanocomposites, biopolymers, starch films, nanocellulose, tape-casting

References

1 Cerqueira, J. C., Penha, J. S., Oliveira, R. S., Guarieiro, L. L. N., Melo, P. S., Viana, J. D., & Machado, B. A. S. (2017). Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros, 27(4), 320-329. http://dx.doi.org/10.1590/0104-1428.05316.

2 Debiagi, F., Ivano, L. R. P. F. M., Nascimento, P. H. A., & Mali, S. (2012). Embalagens biodegradáveis de amido reforçadas com fibras lignocelulósicas provenientes de resíduos agroindustriais. Biochemistry and Biophysics Reports, 1(2), 57-67. http://dx.doi.org/10.5433/2316-5200.2012v1n2p57.

3 Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Starch films: production, properties and potential of utilization. Semina: Ciências Agrárias, 31(1), 137-156. http://dx.doi.org/10.5433/1679-0359.2010v31n1p137.

4 Zhou, X., Cheng, R., Wang, B., Zeng, J., Xu, J., Li, J., Kang, L., Cheng, Z., Gao, W., & Chen, K. (2021). Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate Polymers, 251, 117117. http://dx.doi.org/10.1016/j.carbpol.2020.117117. PMid:33142652.

5 Scott, G. (2000). ‘Green’ polymers. Polymer Degradation & Stability, 68(1), 1-7. http://dx.doi.org/10.1016/S0141-3910(99)00182-2.

6 Abdul Khalil, H. P. S., Davoudpour, Y., Saurabh, C. K., Hossain, M. S., Adnan, A. S., Dungani, R., Paridah, M. T., Mohamed, Z. I. S., Fazita, M. R. N., Syakir, M. I., & Haafiz, M. K. M. (2016). A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renewable & Sustainable Energy Reviews, 64, 823-836. http://dx.doi.org/10.1016/j.rser.2016.06.072.

7 Freitas, R. R. M., Carmo, K. P., Rodrigues, J. S., Lima, V. H., Silva, J. O., & Botaro, V. R. (2020). Influence of alkaline treatment on sisal fibre applied as reinforcement agent in composites of corn starch and cellulose acetate matrices. Plastics. Plastics, Rubber and Composites, 50(1), 9-17. http://dx.doi.org/10.1080/14658011.2020.1816119.

8 Varghese, S. A., Pulikkalparambil, H., Rangappa, S. M., Siengchin, S., & Parameswaranpillai, J. (2020). Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life, 25, 100538. http://dx.doi.org/10.1016/j.fpsl.2020.100538.

9 Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., Xu, J., & Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189, 56-64. http://dx.doi.org/10.1016/j.carbpol.2018.01.063. PMid:29580426.

10 Tavares, K. M., Campos, A., Mitsuyuki, M. C., Luchesi, B. R., & Marconcini, J. M. (2019). Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers, 223, 115055. http://dx.doi.org/10.1016/j.carbpol.2019.115055. PMid:31426991.

11 Travalini, A. P., Lamsal, B., Magalhães, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151-1161. http://dx.doi.org/10.1016/j.ijbiomac.2019.08.115. PMid:31419552.

12 Zou, Y., Yuan, C., Cui, B., Liu, P., Wu, Z., & Zhao, H. (2021). Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydrate Polymers, 251, 117039. http://dx.doi.org/10.1016/j.carbpol.2020.117039. PMid:33142597.

13 Prabhu, T. N., & Prashantha, K. (2018). A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites, 39(7), 2499-2522. http://dx.doi.org/10.1002/pc.24236.

14 Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. International Journal of Biological Macromolecules, 112, 442-447. http://dx.doi.org/10.1016/j.ijbiomac.2018.02.007. PMid:29410268.

15 Kong, R., Wang, J., Cheng, M., Lu, W., Chen, M., Zhang, R., & Wang, X. (2020). Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. International Journal of Biological Macromolecules, 164, 1631-1639. http://dx.doi.org/10.1016/j.ijbiomac.2020.08.016. PMid:32763393.

16 Denardin, C. C., & Silva, L. P. (2009). Starch granules structure and its regards with physicochemical properties. Ciência Rural, 39(3), 945-954. http://dx.doi.org/10.1590/S0103-84782009005000003.

17 Carmo, K. P., & Paiva, J. M. F. (2015). Biodegradable films and starch compositions with other materials. Revista Virtual de Química, 7(6), 2377-2386. http://dx.doi.org/10.5935/1984-6835.20150141.

18 Ismail, S., Mansor, N., Majeed, Z., & Man, Z. (2016). Effect of water and [Emim][OAc] as plasticizer on gelatinization of starch. Procedia Engineering, 148, 524-529. http://dx.doi.org/10.1016/j.proeng.2016.06.542.

19 Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364-372. http://dx.doi.org/10.1016/j.carbpol.2014.09.004. PMid:25439906.

20 Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydrate Polymers, 56(2), 129-135. http://dx.doi.org/10.1016/j.carbpol.2004.01.004.

21 Li, J., Zhou, M., Cheng, G., Cheng, F., Lin, Y., & Zhu, P.-X. (2019). Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydrate Polymers, 210, 429-436. http://dx.doi.org/10.1016/j.carbpol.2019.01.051. PMid:30732779.

22 Fazeli, M., Keley, M., & Biazar, E. (2018). Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. International Journal of Biological Macromolecules, 116, 272-280. http://dx.doi.org/10.1016/j.ijbiomac.2018.04.186. PMid:29729338.

23 Silva, B. A., Oliveira, V. S. G., Di Luccio, M., Hotza, D., Rezwan, K., & Wilhelm, M. (2020). Characterization of functionalized zirconia membranes manufactured by aqueous tape casting. Ceramics International, 46(10), 16096-16103. http://dx.doi.org/10.1016/j.ceramint.2020.03.162.

24 Krishnan, P. P. R., Vijayan, S., Wilson, P., Kumar, P. A., & Prabhakaran, K. (2019). Aqueous tape casting of alumina using natural rubber latex binder. Ceramics International, 45(15), 18543-18550. http://dx.doi.org/10.1016/j.ceramint.2019.06.075.

25 Mister, R. E., & Twiname, E. R. (2000). Tape casting: theory and practice. USA: Wiley-American Ceramic Society. Retrieved in 2023, September 5, from https://www.wiley.com/en-us/Tape+Casting%3A+Theory+and+Practice-p-9781574980295

26 Twiname, E. R. (2020). Tape casting and lamination. In M. Pomeroy (Ed.), Encyclopedia of materials: technical ceramics and glasses (pp. 189-194). USA: Elsevier.

27 Marques, G. S., Carvalho, G. R., Marinho, N. P., Muniz, G. I. B., Jorge, L. M. M., & Jorge, R. M. M. (2019). Production and characterization of starch‐based films reinforced by ramie nanofibers (Boehmeria nivea). Journal of Applied Polymer Science, 136(36), 47919. http://dx.doi.org/10.1002/app.47919.

28 Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. http://dx.doi.org/10.1016/j.carbpol.2007.07.026.

29 ASTM International. (2010). ASTM D882-10: standard test method for tensile properties of thin plastic sheeting. USA: ASTM International.

30 Penfield, M. P., & Campbell, A. M. (1990). Experimental food science. USA: Academic Press. Retrieved in 2023, September 5, from https://shop.elsevier.com/books/experimental-food-science/penfield/978-0-12-157920-3

31 Sriroth, K., Santisopasri, V., Petchalanuwat, C., Kurotjanawong, K., Piyachomkwan, K., & Oates, C. G. (1999). Cassava starch granule structure-function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, 38(2), 161-170. http://dx.doi.org/10.1016/S0144-8617(98)00117-9.

32 Defloor, I., Dehing, I., & Delcour, J. A. (1998). Physico-chemical properties of cassava starch. Stärke, 50(2-3), 58-64. http://dx.doi.org/10.1002/(SICI)1521-379X(199803)50:2/3<58::AID-STAR58>3.0.CO;2-N.

33 Leonel, M. (2007). Analysis of the shape and size of starch grains from different botanical species. Food Science and Technology (Campinas), 27(3), 579-588. http://dx.doi.org/10.1590/S0101-20612007000300024.

34 Almeida, D. M., Woiciechowski, A. L., Wosiacki, G., Prestes, R. A., & Pinheiro, L. A. (2013). Phisical, chemical and barrier properties in film made by bacterial celullose and potato starch blend. Polímeros: Ciência e Tecnologia, 23(4), 538-546. http://dx.doi.org/10.4322/polimeros.2013.038.

35 Araújo, G. K. P., De Souza, S. J., Da Silva, M. V., Yamashita, F., Gonçalves, O. H., Leimann, F. V., & Shirai, M. A. (2015). Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. International Journal of Food Science & Technology, 50(9), 2080-2087. http://dx.doi.org/10.1111/ijfs.12869.

36 Martins, M. P. (2017). Desenvolvimento e caracterização de filme de fécula de mandioca (Manihot esculenta) reforçado com nanocelulose extraída de resíduo de pupunha (Bactris gasipaes Kunth) (Master’s dissertation). Universidade Federal do Paraná, Curitiba. Retrieved in 2023, September 5, from https://acervodigital.ufpr.br/handle/1884/52220

37 Moraes, J. O., Scheibe, A. S., Sereno, A., & Laurindo, J. B. (2013). Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 119(4), 800-808. http://dx.doi.org/10.1016/j.jfoodeng.2013.07.009.

38 Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8), e02009. http://dx.doi.org/10.1016/j.heliyon.2019.e02009. PMid:31497660.

39 Garcia, N. L., Ribba, L., Dufresne, A., Aranguren, M. I., & Goyanes, S. (2009). Physico-mechanical properties of biodegradable starch nanocomposites. Macromolecular Materials and Engineering, 294(3), 169-177. http://dx.doi.org/10.1002/mame.200800271.

40 Coultate, T. P. (2009). The Chemistry of Its Components. UK: The Royal Society of Chmeistry. Retrieved in 2023, September 5, from https://books.google.com.br/books?hl=pt-BR&lr=&id=KF2A8Cz7B-cC&oi=fnd&pg=PR17&dq=The+chemistry+of+its+components&ots=fkz4_scoX4&sig=tK4eT6BdPROuElAFA6AXDqdnUzk#v=onepage&q=The chemistry of its components&f=false

41 Batista, R. D., Mendes, D. C. S., Morais, C. C., Thomaz, D. V., Ascheri, D. P. R., Damiani, C., & Asquieri, E. R. (2020). Physicochemical, functional and rheological properties of fermented and non-fermented starch from canary seed (Phalaris canariensis). Food Hydrocolloids, 99, 105346. http://dx.doi.org/10.1016/j.foodhyd.2019.105346.

42 Fan, H., Ji, N., Zhao, M., Xiong, L., & Sun, Q. (2016). Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chemistry, 192, 865-872. http://dx.doi.org/10.1016/j.foodchem.2015.07.093. PMid:26304422.

43 Corradini, E., Lotti, C., Medeiros, E. S., Carvalho, A. J. F., Curvelo, A. A. S., & Mattoso, L. H. C. (2005). Comparative studies of corn thermoplastic starches with different amylose content. Polímeros: Ciência e Tecnologia, 15(4), 268-273. http://dx.doi.org/10.1590/S0104-14282005000400011.

44 Eliasson, A. (2004). Starch in food: structure, function and applications. USA: Woodhead Publishing Limited Published.
 

660c466ca953957a180c4c32 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections