Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Compatibility and cytotoxicity of poly(ε-caprolactone)/polypyrrole-block-poly(ε-caprolactone) blend films in fibroblast bovine cells

Nelson Luis Gonçalves Dias de Souza; Grasiele Soares Cavallini; Tiago Teixeira Alves; Michele Munk Pereira; Humberto de Mello Brandão; Luiz Fernando Cappa de Oliveira

Downloads: 0
Views: 125


Polymer blends, derived from the combination of two or more polymers, yield novel materials with properties distinct from that of the original polymers. These materials have garnered interest in the medical field. However, for such applications the biocompatibility of the material must be evaluated. In this study, we prepared polymer blends from poly(ε-caprolactone) (PCL) and polypyrrole-block-poly(caprolactone) (PPy-b-PCL) using the casting method. The observed compatibility resulted from specific interactions between the carboxylic group of PCL and the amine group of PPy-b-PCL, as well as between the pyrrole ring of PPy-b-PCL and the CH2 group of PCL. Micro-Raman imaging revealed homogeneity in surface morphology, whereas thermogravimetric analysis indicated that the formation of polymer blends enhances the material’s thermal stability. Importantly, the results demonstrated that the addition of PPy-b-PCL does not affect the cytotoxicity to bovine fibroblasts, suggesting their biocompatibility and potential application in cattle veterinary devices.




biocompatibility, cell proliferation, polymer blends


1 Souza, N. L. G. D., Brandão, H. M., & Oliveira, L. F. C. (2014). Chitosan and poly(methyl methacrylate-co-butyl methacrylate) bioblends: a compatibility study. Polymer-Plastics Technology and Engineering, 53(4), 319-326. http://dx.doi.org/10.1080/03602559.2013.844240.

2 Dasan, K. P., & Rekha, C. (2012). Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article. Current Drug Delivery, 9(6), 588-595. http://dx.doi.org/10.2174/156720112803529783. PMid:22780912.

3 Reddy, K. S., Prabhakar, M. N., Babu, P. K., Venkatesulu, G., Rao, U. S. K., Rao, K. C., & Subha, M. C. S. (2012). Miscibility studies of hydroxypropyl cellulose/poly(ethylene glycol) in dilute solutions and solid state. International Journal of Carbohydrate Chemistry, 2012, 906389. http://dx.doi.org/10.1155/2012/906389.

4 Aid, S., Eddhahak, A., Ortega, Z., Froelich, D., & Tcharkhtchi, A. (2017). Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect. Journal of Applied Polymer Science, 134(25), 44975. http://dx.doi.org/10.1002/app.44975.

5 Arribada, R. G., Behar-Cohen, F., Barros, A. L. B., & Silva-Cunha, A. (2022). The use of polymer blends in the treatment of ocular diseases. Pharmaceutics, 14(7), 1431. http://dx.doi.org/10.3390/pharmaceutics14071431. PMid:35890326.

6 Robeson, L. (2014). Historical perspective of advances in the science and technology of polymer blends. Polymers, 6(5), 1251-1265. http://dx.doi.org/10.3390/polym6051251.

7 Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), 161-176. http://dx.doi.org/10.1016/j.bsbt.2015.08.002.

8 Tekade, R. K. (Ed.). (2019). Basic fundamentals of drug delivery. London: Academic Press.

9 Li, W., Zhou, J., & Xu, Y. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomedical Reports, 3(5), 617-620. http://dx.doi.org/10.3892/br.2015.481. PMid:26405534.

10 Souza, N. L. G. D., Munk, M., Brandão, H. M., & Oliveira, L. F. C. (2017). Cytotoxicity and compatibility of polymeric blend: evaluation of the cytotoxicity in fibroblast bovine cells and compatibility of Poly(ɛ-Caprolactone)/Poly(Methyl Methacrylate-co-Butyl Methacrylate) blend films. Polymer-Plastics Technology and Engineering, 56(10), 1076-1083. http://dx.doi.org/10.1080/03602559.2016.1253735.

11 Pereira, M. M., Raposo, N. R. B., Brayner, R., Teixeira, E. M., Oliveira, V., Quintão, C. C. R., Camargo, L. S. A., Mattoso, L. H. C., & Brandão, H. M. (2013). Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology, 24(7), 075103. http://dx.doi.org/10.1088/0957-4484/24/7/075103. PMid:23358497.

12 Liu, Z.-H., Li, Y., Zhang, C.-J., Zhang, Y.-Y., Cao, X.-H., & Zhang, X.-H. (2020). Synthesis of high-molecular-weight poly(ε-caprolactone) via heterogeneous zinc-cobalt(III) double metal cyanide complex. Giant, 3, 100030. http://dx.doi.org/10.1016/j.giant.2020.100030.

13 Arcana, I. M., Bundjali, B., Yudistira, I., Jariah, B., & Sukria, L. (2007). Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability. Polymer Journal, 39(12), 1337-1344. http://dx.doi.org/10.1295/polymj.PJ2006250.

14 Martin, D. P., & Williams, S. F. (2003). Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochemical Engineering Journal, 16(2), 97-105. http://dx.doi.org/10.1016/S1369-703X(03)00040-8.

15 Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science. Polymer Edition, 29(7-9), 863-893. http://dx.doi.org/10.1080/09205063.2017.1394711. PMid:29053081.

16 Talebi, A., Labbaf, S., & Karimzadeh, F. (2020). Polycaprolactone-chitosan-polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications. Polymer Composites, 41(2), 645-652. http://dx.doi.org/10.1002/pc.25395.

17 Zhang, Z., Roy, R., Dugré, F. J., Tessier, D., & Dao, L. H. (2001). In vitro biocompatibility study of electrically conductive polypyrrole-coated polyester fabrics. Journal of Biomedical Materials Research, 57(1), 63-71. http://dx.doi.org/10.1002/1097-4636(200110)57:1<63::AID-JBM1142>3.0.CO;2-L. PMid:11416850.

18 Ramanaviciene, A., Kausaite, A., Tautkus, S., & Ramanavicius, A. (2007). Biocompatibility of polypyrrole particles: an in-vivo study in mice. The Journal of Pharmacy and Pharmacology, 59(2), 311-315. http://dx.doi.org/10.1211/jpp.59.2.0017. PMid:17270084.

19 Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2013). Biomimetic conducting polymer-based tissue scaffolds. Current Opinion in Biotechnology, 24(5), 847-854. http://dx.doi.org/10.1016/j.copbio.2013.03.011. PMid:23578463.

20 Razavi, M. (2017). Biomaterials for tissue engineering. London: Bentham Science Publishers.

21 Rocha, M. F. B., Aguiar, M. F., Vinhas, G. M., Melo, C. P., Morelli, C. L., & Alves, K. G. B. (2023). Preparation and characterization of PLA/polypyrrole blends with antibacterial properties. Materials Research, 26(Suppl. 1), e20230045. http://dx.doi.org/10.1590/1980-5373-mr-2023-0045.

22 Yang, S., Jang, L., Kim, S., Yang, J., Yang, K., Cho, S.-W., & Lee, J. Y. (2016). Polypyrrole/alginate hybrid hydrogels: electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromolecular Bioscience, 16(11), 1653-1661. http://dx.doi.org/10.1002/mabi.201600148. PMid:27455895.

23 Vijayavenkataraman, S., Vialli, N., Fuh, J. Y. H., & Lu, W. F. (2019). Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs. International Journal of Bioprinting, 5(1), 229. http://dx.doi.org/10.18063/ijb.v5i2.1.229.

24 Zhu, G., Wang, F., Xu, K., Gao, Q., & Liu, Y. (2013). Study on properties of poly(vinyl alcohol)/polyacrylonitrile blend film. Polímeros, 23(2), 146-151. http://dx.doi.org/10.4322/polimeros.2013.076.

25 Rojanapitayakorn, P., Thongyai, S., Higgins, J. S., & Clarke, N. (2001). Effects of sample preparation method on mixing and phase separation in binary polymer blends. Polymer, 42(8), 3475-3487. http://dx.doi.org/10.1016/S0032-3861(00)00783-7.

26 Leite, A. M. D., Araújo, E. M., Lira, H. L., Barbosa, R., & Ito, E. N. (2009). Obtenção de membranas microporosas a partir de manocompósitos de poliamida 6/argila nacional. Parte 1: influência da presença da argila na morfologia das membranas. Polímeros, 19(4), 271-277. http://dx.doi.org/10.1590/S0104-14282009000400005.

27 Souza, N. L. G. D., Munk, M., Brandão, H. M., & Oliveira, L. F. C. (2018). Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan. Polymer Bulletin, 75(10), 4627-4639. http://dx.doi.org/10.1007/s00289-018-2290-5.

28 Arjomandi, J., Shah, A.-U.-H. A., Bilal, S., Van Hoang, H., & Holze, R. (2011). In situ Raman and UV-vis spectroscopic studies of polypyrrole and poly(pyrrole-2,6-dimethyl-β-cyclodextrin). Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 78(1), 1-6. http://dx.doi.org/10.1016/j.saa.2009.12.026. PMid:21111671.

29 Ourari, A., Aggoun, D., & Ouahab, L. (2014). Poly(pyrrole) films efficiently electrodeposited using new monomers derived from 3-bromopropyl-N-pyrrol and dihydroxyacetophenone: electrocatalytic reduction ability towards bromocyclopentane. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 446, 190-198. http://dx.doi.org/10.1016/j.colsurfa.2014.01.047.

30 Misra, R. M., Agarwal, R., Tandon, P., & Gupta, V. D. (2004). Phonon dispersion and heat capacity in poly(ε-caprolactone). European Polymer Journal, 40(8), 1787-1798. http://dx.doi.org/10.1016/j.eurpolymj.2004.04.022.

31 Hou, Y., Zhang, L., Chen, L. Y., Liu, P., Hirata, A., & Chen, M. W. (2014). Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Physical Chemistry Chemical Physics, 16(8), 3523-3528. http://dx.doi.org/10.1039/c3cp54497d. PMid:24441648.

32 Nartker, S., Hassan, M., & Stogsdill, M. (2015). Electrospun cellulose nitrate and polycaprolactone blended nanofibers. Materials Research Express, 2(3), 035401. http://dx.doi.org/10.1088/2053-1591/2/3/035401.

33 Abdelrazek, E. M., Hezma, A. M., El-khodary, A., & Elzayat, A. M. (2016). Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of Basic and Applied Sciences, 3(1), 10-15. http://dx.doi.org/10.1016/j.ejbas.2015.06.001.

34 Kołodziej, A., Długoń, E., Świętek, M., Ziąbka, M., Dawiec, E., Gubernat, M., Michalec, M., & Wesełucha-Birczyńska, A. (2021). A Raman spectroscopic analysis of polymer membranes with graphene oxide and reduced graphene oxide. Journal of Composites Science, 5(1), 20. http://dx.doi.org/10.3390/jcs5010020.

35 Phillipson, K., Hay, J. N., & Jenkins, M. J. (2014). Thermal analysis FTIR spectroscopy of poly(ε-caprolactone). Thermochimica Acta, 595, 74-82. http://dx.doi.org/10.1016/j.tca.2014.08.027.

36 Ángeles Corres, M., Mugica, A., Carrasco, P. M., & Milagros Cortázar, M. (2006). Effect of crystallization on morphology-conductivity relationship in polypyrrole/poly(ɛ-caprolactone) blends. Polymer, 47(19), 6759-6764. http://dx.doi.org/10.1016/j.polymer.2006.07.042.

37 Basavaraja, C., Kim, W. J., Kim, D. G., & Huh, D. S. (2011). Synthesis and characterization of soluble polypyrrole–poly(ɛ-caprolactone) polymer blends with improved electrical conductivities. Materials Chemistry and Physics, 129(3), 787-793. http://dx.doi.org/10.1016/j.matchemphys.2011.05.057.

38 Mitsutake, H., Poppi, R. J., & Breitkreitz, M. C. (2019). Raman imaging spectroscopy: history, fundamentals and current scenario of the technique. Journal of the Brazilian Chemical Society, 30(11), 2243-2258. http://dx.doi.org/10.21577/0103-5053.20190116.

39 Shirahase, T., Komatsu, Y., Tominaga, Y., Asai, S., & Sumita, M. (2006). Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer, 47(13), 4839-4844. http://dx.doi.org/10.1016/j.polymer.2006.04.012.

40 Sivalingam, G., & Madras, G. (2003). Thermal degradation of poly (ε-caprolactone). Polymer Degradation & Stability, 80(1), 11-16. http://dx.doi.org/10.1016/S0141-3910(02)00376-2.

41 Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N.-S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8), 644. http://dx.doi.org/10.3390/ma9080644. PMid:28773763.

42 Marangoni Júnior, L., Rodrigues, P. R., Silva, R. G., Vieira, R. P., & Alves, R. M. V. (2021). Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: preparation and characterization. Food and Bioprocess Technology, 14(12), 2336-2346. http://dx.doi.org/10.1007/s11947-021-02727-7.

43 Zhang, M., Ding, C., Chen, L., & Huang, L. (2013). The preparation of cellulose/collagen composite films using 1-ethyl-3-methylimidazolium acetate as a solvent. BioResources, 9(1), 756-771. http://dx.doi.org/10.15376/biores.9.1.756-771.

44 Yang, M. Y., & Rajamahendran, R. (2000). Morphological and biochemical identification of apoptosis in small, medium, and large bovine follicles and the effects of follicle-stimulating hormone and insulin-like growth factor-I on spontaneous apoptosis in cultured bovine granulosa cells. Biology of Reproduction, 62(5), 1209-1217. http://dx.doi.org/10.1095/biolreprod62.5.1209. PMid:10775168.

45 Rello, S., Stockert, J. C., Moreno, V., Gámez, A., Pacheco, M., Juarranz, A., Cañete, M., & Villanueva, A. (2005). Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis, 10(1), 201-208. http://dx.doi.org/10.1007/s10495-005-6075-6. PMid:15711936.

46 Manzari-Tavakoli, A., Tarasi, R., Sedghi, R., Moghimi, A., & Niknejad, H. (2020). Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering. Scientific Reports, 10(1), 22012. http://dx.doi.org/10.1038/s41598-020-78650-2. PMid:33328579.

47 Ferreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Tondo, P. H. F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, J. A., & Basso, N. R. S. (2019). Biocompatible PCL/PLGA/polypyrrole composites for regenerating nerves. Macromolecular Symposia, 383(1), 1800028. http://dx.doi.org/10.1002/masy.201800028.

660c4741a953957a871f5d42 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections