Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230075
Polímeros: Ciência e Tecnologia
Original Article

Incorporation of organic acids in the crosslinking of polyvinyl alcohol hydrogels

Dione Pereira de Castro; Vanessa Zimmer Kieffer; Ruth Marlene Campomanes Santana

Downloads: 0
Views: 126

Abstract

This work studied the incorporation of organic acids as crosslinking agents and reaction time on the properties of poly(alcohol vinyl) (PVOH) hydrogels to act as scaffold systems to compounds incorporated into agriculture systems. PVOH hydrogels crosslinked with citric and L-malic acids were prepared, and the effects of heat-treatment time, and temperature on their swelling and hygroscopic performances were investigated by FTIR, thermal analysis and swelling. Both the swelling and rate of water uptake of hydrogels decreased with increasing heat-treatment time. While the swelling decreased with heat-treatment time, the chemical crosslinking shown in FTIR increased. DSC results indicated adsorbed water in the uncrosslinked PVOH and hydrogels, and the absorbed water changed the melting point and glass transition temperature. TGA analysis showed that the incorporation of organic acids brought thermal stability. The results obtained show effective crosslinking hydrogels by L-malic acids and possibilities to use in scaffold systems and controlled release.

 

 

Keywords

PVOH hydrogels, chemical crosslinking, citric and malic acids

References

1 Awada, H., & Daneault, C. (2015). Chemical modification of poly(vinyl alcohol) in water. Applied Sciences, 5(4), 840-850. http://dx.doi.org/10.3390/app5040840.

2 Gautam, L., Warkar, S. G., Ahmad, S. I., Kant, R., & Jain, M. (2022). A review on carboxylic acid cross-linked polyvinyl alcohol: properties and applications. Polymer Engineering and Science, 62(2), 225-246. http://dx.doi.org/10.1002/pen.25849.

3 Nthoiwa, K. K. M., Diaz, C. A., & Chaudhari, Y. (2016). Vinyl alcohol polymers. In O. Olabisi & K. Adewale (Eds.), Handbook of thermoplastics (pp. 53-88). Boca Raton: CRC Press.

4 Göksen, G., Fabra, M. J., Pérez-Cataluna, A., Ekiz, H. I., Sanchez, G., & López-Rubio, A. (2021). Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packaging and Shelf Life, 27, 100613. http://dx.doi.org/10.1016/j.fpsl.2020.100613.

5 Kumar, A., & Han, S. S. (2017). PVA-based hydrogels for tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(4), 159-182. http://dx.doi.org/10.1080/00914037.2016.1190930.

6 Jiang, X., Li, C., & Han, Q. (2023). Modulation of swelling of PVA hydrogel by polymer and crosslinking agent concentration. Polymer Bulletin, 80(2), 1303-1320. http://dx.doi.org/10.1007/s00289-022-04116-2.

7 Zhao, J., Li, J., Zeng, Q., Wang, H., Yu, J., Ren, K., Dai, Z., Zhang, H., Zheng, J., & Hu, R. (2022). A chewing gum residue-based gel with superior mechanical properties and self-healability for flexible wearable sensor. Macromolecular Rapid Communications, 43(13), e2200234. http://dx.doi.org/10.1002/marc.202270037. PMid:35483003.

8 Gao, Y., Ye, H., Wang, L., & Liu, M. (2017). Experimental investigation of the effects of crosslinking processes on the swelling and hygroscopic performances of a poly(vinyl alcohol) membrane. Journal of Applied Polymer Science, 134(7), 44481. http://dx.doi.org/10.1002/app.44481.

9 Pei, M., Peng, X., Wan, T., Fan, P., Yang, H., Liu, X., Xu, W., Zhou, Y., & Xiao, P. (2021). Double cross-linked poly(vinyl alcohol) microcomposite hydrogels with high strength and cell compatibility. European Polymer Journal, 160, 110786. http://dx.doi.org/10.1016/j.eurpolymj.2021.110786.

10 Yang, M., Guo, W., Liu, S., Zhang, B., Chen, Y., & Wang, Y. (2021). Highly stretchable gamma-irradiated poly (vinyl alcohol)/tannic acid composite hydrogels with superior transparency and antibacterial activity. Journal of Polymer Research, 28(11), 412. http://dx.doi.org/10.1007/s10965-021-02777-7.

11 Sonker, A. K., & Verma, V. (2018). Influence of crosslinking methods toward poly(vinyl alcohol) properties: microwave irradiation and conventional heating. Journal of Applied Polymer Science, 135(14), 46125. http://dx.doi.org/10.1002/app.46125.

12 Sethi, S., Medha, Thakur, S., Sharma, D., Singh, G., Sharma, N., Kaith, B. S., & Khullar, S. (2022). Malic acid cross-linked chitosan based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. Reactive & Functional Polymers, 177, 105318. http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105318.

13 Karoyo, A. H., & Wilson, L. D. (2021). Review on the design and hydration properties of natural polymer-based hydrogels. Materials, 14(5), 1095. http://dx.doi.org/10.3390/ma14051095. PMid:33652859.

14 Altaf, F., Niazi, M. B. K., Jahan, Z., Ahmad, T., Akram, M. A., Safdar, A., Butt, M. S., Noor, T., & Sher, F. (2021). Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment, 29(1), 156-174. http://dx.doi.org/10.1007/s10924-020-01866-w.

15 Valdés, C., Valdés, O., Bustos, D., Abril, D., Cabrera-Barjas, G., Pereira, A., Villaseñor, J., Polo-Cuadrado, E., Carreño, G., Durán-Lara, E. F., & Marican, A. (2021). Use of Poly(vinyl alcohol)-Malic Acid (CLHPMA) hydrogels and Chitosan Coated Calcium Alginate (CCCA) microparticles as potential sorbent phases for the extraction and quantitative determination of pesticides from aqueous solutions. Polymers, 13(22), 3993. http://dx.doi.org/10.3390/polym13223993. PMid:34833292.

16 Dlamini, D. S., Wang, J., Mishra, A. K., Mamba, B. B., & Hoek, E. M. V. (2014). Effect of cross-linking agent chemistry and coating conditions on physical, chemical, and separation properties of PVA-Psf composite membranes. Separation Science and Technology, 49(1), 22-29. http://dx.doi.org/10.1080/01496395.2013.813040.

17 Zhang, Q., Huang, X., Zhang, L., & Jin, Z. (2022). Isothermal titration calorimetry directly measures the selective swelling of block copolymer vesicles in the presence of organic acid. ACS Omega, 7(12), 10580-10587. http://dx.doi.org/10.1021/acsomega.2c00124. PMid:35382279.

18 Omidian, H., & Park, K. (2010). Introduction to hydrogels. In R. M. Ottenbrite, K. Park & T. Okano (Eds.), Biomedical applications of hydrogels handbook (pp. 1-16). New York: Springer. http://dx.doi.org/10.1007/978-1-4419-5919-5_1.

19 Awad, S. A., & Khalaf, E. M. (2020). Evaluation of the photostabilizing efficiency of polyvinyl alcohol-zinc chloride composites. Journal of Thermoplastic Composite Materials, 33(1), 69-84. http://dx.doi.org/10.1177/0892705718804585.

20 Huang, S.-M., Liu, S.-M., Tseng, H.-Y., & Chen, W.-C. (2023). Effect of citric acid on swelling resistance and physicochemical properties of post-crosslinked electrospun polyvinyl alcohol fibrous membrane. Polymers, 15(7), 1738. http://dx.doi.org/10.3390/polym15071738. PMid:37050352.

21 Franco, E., Dussán, R., Navia, D. P., & Amú, M. (2021). Study of the annealing effect of starch/polyvinyl alcohol films crosslinked with glutaraldehyde. Gels, 7(4), 249. http://dx.doi.org/10.3390/gels7040249. PMid:34940309.

22 Sabzi, M., Afshari, M. J., Babaahmadi, M., & Shafagh, N. (2020). pH-dependent swelling and antibiotic release from citric acid crosslinked poly(vinyl alcohol) (PVA)/nano silver hydrogels. Colloids and Surfaces. B, Biointerfaces, 188, 110757. http://dx.doi.org/10.1016/j.colsurfb.2019.110757. PMid:31887648.

23 Zhang, Y., Lin, S., Qiao, J., Kołodyńska, D., Ju, Y., Zhang, M., Cai, M., Deng, D., & Dionysiou, D. D. (2018). Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(VI) and Cu(II) from aqueous solution. Chemical Engineering Journal, 353, 225-236. http://dx.doi.org/10.1016/j.cej.2018.06.143.

24 Yu, D., Feng, Y.-Y., Xu, J.-X., Kong, B.-H., Liu, Q., & Wang, H. (2021). Fabrication, characterization, and antibacterial properties of citric acid crosslinked PVA electrospun microfibre mats for active food packaging. Packaging Technology & Science, 34(6), 361-370. http://dx.doi.org/10.1002/pts.2566.

25 Kanmaz, N., Saloglu, D., & Hizal, J. (2019). Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: synthesis, characterization, swelling kinetic and diffusion coefficient. Chemical Engineering Communications, 206(9), 1168-1180. http://dx.doi.org/10.1080/00986445.2018.1550396.

26 Uyanga, K. A., & Daoud, W. A. (2021). Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: effect of crosslinker on microstructure. Cellulose, 28(9), 5493-5512. http://dx.doi.org/10.1007/s10570-021-03870-2.

27 Eid, M., Yehia, R., & Amin, A. (2021). Swelling modelling and kinetics investigation of polymer hydrogel composed of Chitosan-g-(AA-AM). Egyptian Journal of Chemistry, 64(10), 5999-6005. http://dx.doi.org/10.21608/ejchem.2021.88530.4260.
 

657b0e26a95395618d2e3623 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections