Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230070
Polímeros: Ciência e Tecnologia
Original Article

All-polymer-based ammonia gas sensor: applying insights from the morphology-driven ac electrical performance

Ana Carolina Kelmer; Cleidinéia Cavalcante da Costa; Rodrigo Fernando Bianchi

Downloads: 0
Views: 475

Abstract

This paper investigates the electrical, morphological, and mechanical behavior of ultrathin layer-by-layer polyaniline/poly(vinyl sulfonic acid) (PANI/PVS) ultrathin films for ammonia gas sensing. Atomic force microscopy shows that the PANI/PVS surface's roughness increases almost linearly with the number of PANI/PVS bilayers, while the surface morphology varies from a rod-like structure to a film-like architecture. Impedance measurements and their representation by a Cole-Cole model confirm this transition at ~15 bilayers. The designed sensor shows low response time (< 1 min), an optimal operating frequency range (1–100 Hz), high stability and sensibility to ammonia (~ 98 kΩ/ppm), and low sensibility to strain (~ 3.6 kΩ/%). This study suggests that hopping carriers' concentration remains constant, and hopping carriers' mobility changes with the number of bilayers. The simultaneous analysis of morphology with complex impedance measurements is a strategy for enhancing the electrical performance of low-cost and flexible organic sensing devices.

 

 

Keywords

conductivity, printed devices, sensing devices, strain gauges, topology

References

1 Zhang, D., Huang, T., & Duan, L. (2020). Emerging self-emissive technologies for flexible displays. Advanced Materials, 32(15), 1902391. http://dx.doi.org/10.1002/adma.201902391. PMid:31595613.

2 Wang, L., Lou, Z., Jiang, K., & Shen, G. (2019). Bio‐multifunctional smart wearable sensors for medical devices. Advanced Intelligent Systems, 1(5), 1900040. http://dx.doi.org/10.1002/aisy.201900040.

3 Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., & Ning, H. (2019). Review on smart gas sensing technology. Sensors (Basel), 19(17), 3760. http://dx.doi.org/10.3390/s19173760. PMid:31480359.

4 Wang, Y., Liu, A., Han, Y., & Li, T. (2020). Sensors based on conductive polymers and their composites: a review. Polymer International, 69(1), 7-17. http://dx.doi.org/10.1002/pi.5907.

5 Bandodkar, A. J., Jeerapan, I., & Wang, J. (2016). Wearable chemical sensors: present challenges and future prospects. ACS Sensors, 1(5), 464-482. http://dx.doi.org/10.1021/acssensors.6b00250.

6 Hussain, A. M., Ghoneim, M. T., Rojas, J. P., & Fahad, H. (2019). Flexible and/or stretchable sensor systems. Journal of Sensors, 2019, 1828394. http://dx.doi.org/10.1155/2019/1828394.

7 Dahiya, R., Yogeswaran, N., Liu, F., Manjakkal, L., Burdet, E., Hayward, V., & Jorntell, H. (2019). Large-area soft e-skin: the challenges beyond sensor designs. Proceedings of the IEEE, 107(10), 2016-2033. http://dx.doi.org/10.1109/JPROC.2019.2941366.

8 Kumar, K. S., Chen, P.-Y., & Ren, H. (2019). A review of printable flexible and stretchable tactile sensors. Research, 2019, 3018568. http://dx.doi.org/10.34133/2019/3018568.

9 Bach-Toledo, L., Hryniewicz, B. M., Marchesi, L. F., Dall’Antonia, L. H., Vidotti, M., & Wolfart, F. (2020). Conducting polymers and composites nanowires for energy devices: a brief review. Materials Science for Energy Technologies, 3, 78-90. http://dx.doi.org/10.1016/j.mset.2019.09.006.

10 Haneef, H. F., Zeidell, A. M., & Jurchescu, O. D. (2020). Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 8(3), 759-787. http://dx.doi.org/10.1039/C9TC05695E.

11 McBride, M., Liu, A., Reichmanis, E., & Grover, M. A. (2020). Toward data-enabled process optimization of deformable electronic polymer-based devices. Current Opinion in Chemical Engineering, 27, 72-80. http://dx.doi.org/10.1016/j.coche.2019.11.009.

12 Mapa, L. M., Golin, A. F., Costa, C. C., & Bianchi, R. F. (2019). The use of complex impedance spectroscopy measurements for improving strain sensor performance. Sensors and Actuators. A, Physical, 293, 101-107. http://dx.doi.org/10.1016/j.sna.2019.02.001.

13 Santos, M. C., Hamdan, O. H. C., Valverde, S. A., Guerra, E. M., & Bianchi, R. F. (2019). Synthesis and characterization of v2o5/pani thin films for application in amperometric ammonia gas sensors. Organic Electronics, 65, 116-120. http://dx.doi.org/10.1016/j.orgel.2018.11.013.

14 Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B., & Habchi, R. (2018). A review on flexible gas sensors: from materials to devices. Sensors and Actuators. A, Physical, 284, 209-231. http://dx.doi.org/10.1016/j.sna.2018.10.036.

15 Zhang, W., Wu, Z., Hu, J., Cao, Y., Guo, J., Long, M., Duan, H., & Jia, D. (2020). Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives. Sensors and Actuators. B, Chemical, 304, 127233. http://dx.doi.org/10.1016/j.snb.2019.127233.

16 Fratoddi, I., Venditti, I., Cametti, C., & Russo, M. V. (2015). Chemiresistive polyaniline-based gas sensors: a mini review. Sensors and Actuators. B, Chemical, 220, 534-548. http://dx.doi.org/10.1016/j.snb.2015.05.107.

17 Nagare, A. B., Harale, N. S., Mali, S. S., Nikam, S. S., Patil, P. S., Hong, C. K., & Moholkar, A. V. (2019). Chemiresistive ammonia gas sensor based on branched nanofibrous polyaniline thin films. Journal of Materials Science Materials in Electronics, 30(13), 11878-11887. http://dx.doi.org/10.1007/s10854-019-01514-7.

18 Zhang, T., Qi, H., Liao, Z., Horev, Y. D., Panes-Ruiz, L. A., Petkov, P. S., Zhang, Z., Shivhare, R., Zhang, P., Liu, K., Bezugly, V., Liu, S., Zheng, Z., Mannsfeld, S., Heine, T., Cuniberti, G., Haick, H., Zschech, E., Kaiser, U., Dong, R., & Feng, X. (2019). Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nature Communications, 10(1), 4225. http://dx.doi.org/10.1038/s41467-019-11921-3. PMid:31548543.

19 Song, E., & Choi, J.-W. (2013). Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials (Basel, Switzerland), 3(3), 498-523. http://dx.doi.org/10.3390/nano3030498. PMid:28348347.

20 Souza, N. C., Silva, J. R., Pereira-Da-Silva, M. A., Raposo, M., Faria, R. M., Giacometti, J. A., & Oliveira, O. N. (2004). Dynamic scale theory for characterizing surface morphology of layer-by-layer films of poly(o-Methoxyaniline). Journal of Nanoscience and Nanotechnology, 4(5), 548-552. http://dx.doi.org/10.1166/jnn.2004.084. PMid:15503441.

21 Bao, Q., Braun, S., Wang, C., Liu, X., & Fahlman, M. (2019). Interfaces of (Ultra)thin polymer films in organic electronics. Advanced Materials Interfaces, 6(1), 1800897. http://dx.doi.org/10.1002/admi.201800897.

22 Ramgir, N. S. (2013). Electronic nose based on nanomaterials: issues, challenges, and prospects. ISRN Nanomaterials, 2013, 941581. http://dx.doi.org/10.1155/2013/941581.

23 Couto, J. D., Santos, M. C., & Bianchi, R. F. (2019). Exploring the universality of the alternating conductivity of disordered materials using gaussian distribution of activation energies. Materials Research Express, 6(4), 046302. http://dx.doi.org/10.1088/2053-1591/aad1ce.

24 Wong, Y. C., Ang, B. C., Haseeb, A. S. M. A., Baharuddin, A. A., & Wong, Y. H. (2020). Conducting polymers as chemiresistive gas sensing materials: a review. Journal of the Electrochemical Society, 167(3), 037503. http://dx.doi.org/10.1149/2.0032003JES.

25 Calheiro, D. S., & Bianchi, R. F. (2019). Tuning the detection limit in hybrid organic-inorganic materials for improving electrical performance of sensing devices. Sensors and Actuators. A, Physical, 298, 111480. http://dx.doi.org/10.1016/j.sna.2019.07.005.

26 Santos, M. C., Bianchi, A. G. C., Ushizima, D. M., Pavinatto, F. J., & Bianchi, R. F. (2017). Ammonia gas sensor based on the frequency-dependent impedance characteristics of ultrathin polyaniline films. Sensors and Actuators. A, Physical, 253, 156-164. http://dx.doi.org/10.1016/j.sna.2016.08.005.

27 Diniz, M. O., Golin, A. F., Santos, M. C., Bianchi, R. F., & Guerra, E. M. (2019). Improving performance of polymer-based ammonia gas sensor using POMA/V2O5 hybrid films. Organic Electronics, 67, 215-221. http://dx.doi.org/10.1016/j.orgel.2019.01.039.

28 Faria, A. M. A., Miranda, M. A., Gonçalves, G. E., Bianchi, R. F., Bianchi, A. G. C., Cuba, C., Neves, B. R. A., & Pinto, E. S. (2020). Partially ordered porous structures on layer-by-layer Polyaniline/Poly(Vinyl Sulfate Sodium) ultrathin films: easy fabrication of robust submicroscopic patterning. Journal of Applied Polymer Science, 137(17), 48597. http://dx.doi.org/10.1002/app.48597.

29 Santos, M. C., Santos, F. A., Teixeira, F. P., Gonçalves, G. E., Bianchi, A. G. C., & Bianchi, R. F. (2007). Caracterização elétrica de filmes ultrafinos de PANI/PVS: material potencial para detecção de amônia em galpões de criação avícola. Polímeros: Ciência e Tecnologia, 20(3), 107-111. http://dx.doi.org/10.1590/S0104-14282010005000018.

30 Ferreira, M., Fiorito, P. A., Oliveira, O. N., Jr., & Torresi, S. I. C. (2004). Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors & Bioelectronics, 19(12), 1611-1615. http://dx.doi.org/10.1016/j.bios.2003.12.025. PMid:15142594.

31 Santos, M. C., Munford, M. L., & Bianchi, R. F. (2012). Influence of NiCr/Au electrodes and multilayer thickness on the electrical properties of PANI/PVS ultrathin film grown by Lbl deposition. Materials Science and Engineering B, 177(4), 359-366. http://dx.doi.org/10.1016/j.mseb.2011.12.039.

32 Lobo, R. F. M., Pereira-da-Silva, M. A., Raposo, M., Faria, R. M., & Oliveira, O. N., Jr. (2003). The morphology of layer-by-layer films of Polymer/Polyelectrolyte studied by atomic force microscopy. Nanotechnology, 14(1), 101-108. http://dx.doi.org/10.1088/0957-4484/14/1/322.

33 Bianchi, R. F., Ferreira, G. F. L., Lepienski, C. M., & Faria, R. M. (1999). Alternating electrical conductivity of polyaniline. The Journal of Chemical Physics, 110(9), 4602-4607. http://dx.doi.org/10.1063/1.478341.

34 Neto, J. M. G., Ferreira, G. F. L., Santos, J. R., Jr., Cunha, H. N., Dantas, I. F., & Bianchi, R. F. (2003). Complex conductance of Carnauba Wax/Polyaniline composites II experimental procedure experimental results. Brazilian Journal of Physics, 33(2), 371-375. http://dx.doi.org/10.1590/S0103-97332003000200040.

35 Bianchi, R. F., Cunha, H. N., Faria, R. M., Ferreira, G. F. L., & Neto, J. M. G. (2005). Electrical studies on the doping dependence and electrode effect of Metal-PANI-Metal structures. Journal of Physics. D, Applied Physics, 38(9), 1437-1443. http://dx.doi.org/10.1088/0022-3727/38/9/017.
 

660c4a10a953957c1a718de2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections