Novel modified blister test to evaluate composites used in repairing cracked pipeline
Payman Sahbah Ahmed; Jafar Abdullah Ali; Serwan Sarbast Mohammed Talabani
Abstract
Keywords
References
1 Saeed, N. (2015).
2 Barros, S., Bdhe, S., Banea, M. D., Rohem, N. R. F., Sampaio, E. M., Perrut, V. A., & Lana, L. D. M. (2018). An assessment of composite repair system in offshore platform for corroded circumferential welds in super duplex steel pipe.
3 Linden, J. M., Köpple, M., Elder, D., & Gibson, A. G. (2012). Modelling of composite repairs for steel pressure piping. In
4 Linden, J. M., Kotsikos, G., & Gibson, A. G. (2016). Strain energy release rate in shaft-loaded blister tests for composite repairs on steel.
5 Skorski, S. A. (1994).
6 Borowski, E., Soliman, E., Kandil, U. F., & Taha, M. R. (2015). Interlaminar fracture toughness of carbon fiber reinforced polymer laminates incorporating multi-walled carbon nanotubes.
7 Tan, K. T., White, C. C., Hunston, D. L., Clerici, C., Steffens, K. L., Goldman, J., & Vogt, B. D. (2008). Fundamentals of adhesion failure for a model adhesive (poly methel metha acrylate/glass) joint in humid environments.
8 Alexander, C. R. (2007).
9 Abdelouahed, E., Benzaama, H., Mokhtari, M., & Aour, B. (2019). Pipeline repair by composite patch under temperature and pressure loading.
10 Liland, K. B., Faremo, H., & Furuheim, K. M. (2019). Blister test as method of measuring adhesion of solids on a flat surface. In
11 Cao, Z., Wang, P., Gao, W., Tao, L., Suk, J. W., Ruoff, R. S., Akinwande, D., Huang, R., & Liechti, K. M. (2014). A blister test for interfacial adhesion of large-scale transferred graphene.
12 Barros, S., Fadhil, B. M., Alila, F., Diop, J., Reis, J. M. L., Casari, P., & Jacquemin, F. (2019). Using blister test to predict the failure pressure in bonded composite repaired pipes.
13 Ahmed, P. S. (2023). Effect of hybridisation and nano reinforcement on repairing cracked pipeline.
14 Uzay, Ç., Acer, D., & Geren, N. (2019). Impact strength of interply and intraply hybrid laminates based on carbon-aramid/epoxy composites.
15 Liang, J., Liu, L., Qin, Z., Zhao, X., Li, Z., Emmanuel, U., & Feng, J. (2023). Experimental study of curing temperature effect on mechanical performance of carbon fiber composites with application to filament winding pressure vessel design.
16 American Society for Testing and Materials – ASTM. (2002).
17 American Society for Testing and Materials – ASTM. (2013).
18 Saadati, Y., Chatelain, J.-F., Lebrun, G., Beauchamp, Y., Bocher, P., & Vanderesse, N. (2020). A study of the interlaminar fracture toughness of unidirectional flax/epoxy composites.
19 Ahmed, P. S., Kamal, A. A., Abdulkader, N. J., Fadhil, B. M., & Khoshnaw, F. (2023). Blister test to evaluate the Multiwall Carbon Nanotubes (MWCNT): woven carbon fiber reinforced epoxy used for repairing pipelines.
20 El Moumen, A., Kanit, T., & Imad, A. (2021). Numerical evaluation of the representative volume element for random composites.
21 Abdalla, F. H., Megat, M. H., Hamdan, M. S., Sapuan, M. S., & Sahari, B. B. (2008). Determination of volume fraction values of filament wound glass and carbon fiber reinforced composites.
22 Yun, J.-H., Jeon, Y.-J., & Kang, M.-S. (2023). Prediction of the elastic properties of ultra high molecular weight polyethylene reinforced polypropylene composites using a numerical homogenisation approach.
23 Farooq, M., & Banthi, N. (2018). An innovative FRP fibre for concrete reinforcement: production of fibre, micromechanics, and durability.
24 Kim, H. S., Wang, W.-X., & Takao, Y. (1999). Effects of temperature and fiber orientation on mode I interlaminar fracture toughness of carbon/epoxy composites. In
25 International Organization for Standardization – ISO. (2017).