Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Novel modified blister test to evaluate composites used in repairing cracked pipeline

Payman Sahbah Ahmed; Jafar Abdullah Ali; Serwan Sarbast Mohammed Talabani

Downloads: 0
Views: 119


The traditional method of fixing cracked pipes by welding needs stopping the production. In this study, a composite material is used to repair pipelines without interrupting production, saving both time and money. Hand Layup and vacuum infusion techniques were used to prepare glass strand mat and intra-ply hybrid glass - carbon fibers composites repairs. To show the composites' strength, blister, double cantilever beam, and peel tests were conducted. A novel modified blister test was utilized to show effectiveness of laboratory tests on real pipeline. The results indicate that vacuum infused intra-ply hybrid composite exhibited the highest strength. The experimental results of the best composite were compared with the finite element model under blister test, and the results were found to be identical. The modified blister test on the real pipe provides a better indication about the good strength of the composite repair compared to previous researches.




cracked pipe repair, hand lay up, intra-ply hybrid composite, modified blister test, vaccum infusion


1 Saeed, N. (2015). Composite overwrap repair system for pipelines: onshore and offshore application (Doctoral thesis). The University of Queensland, Austria.

2 Barros, S., Bdhe, S., Banea, M. D., Rohem, N. R. F., Sampaio, E. M., Perrut, V. A., & Lana, L. D. M. (2018). An assessment of composite repair system in offshore platform for corroded circumferential welds in super duplex steel pipe. Frattura ed Integrità Strutturale, 12(44), 151-160. http://dx.doi.org/10.3221/IGF-ESIS.44.12.

3 Linden, J. M., Köpple, M., Elder, D., & Gibson, A. G. (2012). Modelling of composite repairs for steel pressure piping. In Proceedings of the 15th European Conference on Composite Materials - ECCM15 (pp. 1- 8). Venice, Italy: University of Padova.

4 Linden, J. M., Kotsikos, G., & Gibson, A. G. (2016). Strain energy release rate in shaft-loaded blister tests for composite repairs on steel. Composites. Part A, Applied Science and Manufacturing, 81, 129-138. http://dx.doi.org/10.1016/j.compositesa.2015.10.026.

5 Skorski, S. A. (1994). Measurement of adhesion using the island blister test (Doctoral thesis). Massachusetts Institute of Technology, Massachusetts.

6 Borowski, E., Soliman, E., Kandil, U. F., & Taha, M. R. (2015). Interlaminar fracture toughness of carbon fiber reinforced polymer laminates incorporating multi-walled carbon nanotubes. Polymers, 7(6), 1020-1045. http://dx.doi.org/10.3390/polym7061020.

7 Tan, K. T., White, C. C., Hunston, D. L., Clerici, C., Steffens, K. L., Goldman, J., & Vogt, B. D. (2008). Fundamentals of adhesion failure for a model adhesive (poly methel metha acrylate/glass) joint in humid environments. The Journal of Adhesion, 84(4), 339-367. http://dx.doi.org/10.1080/00218460802004428.

8 Alexander, C. R. (2007). Development of a composite repair system for reinforcing offshore series (Doctoral thesis). Texas A&M University, Texas.

9 Abdelouahed, E., Benzaama, H., Mokhtari, M., & Aour, B. (2019). Pipeline repair by composite patch under temperature and pressure loading. Frattura ed Integrità Strutturale, 13(49), 690-697. http://dx.doi.org/10.3221/IGF-ESIS.49.62.

10 Liland, K. B., Faremo, H., & Furuheim, K. M. (2019). Blister test as method of measuring adhesion of solids on a flat surface. In Proceedings of the 26th Nordic Insulation Symposium on Materials, Components and Diagnostics, Tampere (NORD-IS 19) (pp. 108–112). Finland: Norwegian University of Science and Technology.. http://dx.doi.org/10.5324/nordis.v0i26.3288.

11 Cao, Z., Wang, P., Gao, W., Tao, L., Suk, J. W., Ruoff, R. S., Akinwande, D., Huang, R., & Liechti, K. M. (2014). A blister test for interfacial adhesion of large-scale transferred graphene. Carbon, 69, 390-400. http://dx.doi.org/10.1016/j.carbon.2013.12.041.

12 Barros, S., Fadhil, B. M., Alila, F., Diop, J., Reis, J. M. L., Casari, P., & Jacquemin, F. (2019). Using blister test to predict the failure pressure in bonded composite repaired pipes. Composite Structures, 211, 125-133. http://dx.doi.org/10.1016/j.compstruct.2018.12.030.

13 Ahmed, P. S. (2023). Effect of hybridisation and nano reinforcement on repairing cracked pipeline. Polímeros, 33(1), e20230010. http://dx.doi.org/10.1590/0104-1428.20220111.

14 Uzay, Ç., Acer, D., & Geren, N. (2019). Impact strength of interply and intraply hybrid laminates based on carbon-aramid/epoxy composites. European Mechanical Science, 3(1), 1-5. http://dx.doi.org/10.26701/ems.384440.

15 Liang, J., Liu, L., Qin, Z., Zhao, X., Li, Z., Emmanuel, U., & Feng, J. (2023). Experimental study of curing temperature effect on mechanical performance of carbon fiber composites with application to filament winding pressure vessel design. Polymers, 15(4), 982. http://dx.doi.org/10.3390/polym15040982. PMid:36850262.

16 American Society for Testing and Materials – ASTM. (2002). ASTM D 3330/D 3330M-02e1: standard test method for peel adhesion of pressure-sensitive tape. West Conshohocken: ASTM International.

17 American Society for Testing and Materials – ASTM. (2013). ASTM D 5528-13: standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken: ASTM International.

18 Saadati, Y., Chatelain, J.-F., Lebrun, G., Beauchamp, Y., Bocher, P., & Vanderesse, N. (2020). A study of the interlaminar fracture toughness of unidirectional flax/epoxy composites. Journal of Composites Science, 4(2), 66. http://dx.doi.org/10.3390/jcs4020066.

19 Ahmed, P. S., Kamal, A. A., Abdulkader, N. J., Fadhil, B. M., & Khoshnaw, F. (2023). Blister test to evaluate the Multiwall Carbon Nanotubes (MWCNT): woven carbon fiber reinforced epoxy used for repairing pipelines. Multidiscipline Modeling in Materials and Structures, 19(5), 953-965. http://dx.doi.org/10.1108/MMMS-11-2022-0266.

20 El Moumen, A., Kanit, T., & Imad, A. (2021). Numerical evaluation of the representative volume element for random composites. European Journal of Mechanics. A, Solids, 86, 104181. http://dx.doi.org/10.1016/j.euromechsol.2020.104181.

21 Abdalla, F. H., Megat, M. H., Hamdan, M. S., Sapuan, M. S., & Sahari, B. B. (2008). Determination of volume fraction values of filament wound glass and carbon fiber reinforced composites. Journal of Engineering and Applied Sciences, 3(4), 7-11. Retrieved in 2023, July 12, from http://www.arpnjournals.com/jeas/research_papers/rp_2008/jeas_0808_109.pdf

22 Yun, J.-H., Jeon, Y.-J., & Kang, M.-S. (2023). Prediction of the elastic properties of ultra high molecular weight polyethylene reinforced polypropylene composites using a numerical homogenisation approach. Applied Sciences (Basel, Switzerland), 13(6), 3638. http://dx.doi.org/10.3390/app13063638.

23 Farooq, M., & Banthi, N. (2018). An innovative FRP fibre for concrete reinforcement: production of fibre, micromechanics, and durability. Construction & Building Materials, 172, 406-421. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.198.

24 Kim, H. S., Wang, W.-X., & Takao, Y. (1999). Effects of temperature and fiber orientation on mode I interlaminar fracture toughness of carbon/epoxy composites. In Proceedings of the 12th International Conference on Composite Materials (ICCM-12) (p. 276). Paris: International Committee on Composite Materials. Retrieved in 2023, July 12, from https://iccm-central.org/Proceedings/ICCM12proceedings/papers/pap276.pdf

25 International Organization for Standardization – ISO. (2017). ISO/TS 24817: petroleum, petrochemical and natural gas industries: composite repairs for pipework: qualification and design, installation, testing and inspection. Geneva: ISO.

657b0b26a953955f752aa6b2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections