Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230062
Polímeros: Ciência e Tecnologia
Original Article

Effect of accelerated weathering environment on the carbon fiber/polyamide 6 composites

Larissa Stieven Montagna; Guilherme Ferreira de Melo Morgado; Juliano Marini; Thaís Larissa do Amaral Montanheiro; Alessandro Guimarães; Fabio Roberto Passador; Mirabel Cerqueira Rezende

Downloads: 1
Views: 534

Abstract

Prolonged exposure to environmental conditions such as ultraviolet radiation, humidity, and temperature, to which carbon fiber-reinforced thermoplastic polymer components are exposed during their service life, can lead to significant changes in mechanical, physical, and chemicals properties, and can often be irreversible, resulting in premature component failure. This study presents the influence of accelerated weathering exposure times (400 h, 800 h, and 1200 h) on the mechanical, thermal, and structural properties of carbon fiber (CF)/polyamide 6 (PA6) laminates. Analyses of composite surfaces were carried out using microscopy and contact angle measurements, which indicated that the factors of exposure to accelerated only affected the surface of the composites, showing signs of the beginning of degradation. The tensile strength (609 MPa ± 10 MPa) and interlaminar shear strength (27 MPa ± 0.9 MPa) did not present significant changes, showing that the reinforcement, the matrix, and the interface remained stable after exposure to accelerated.

 

 

Keywords

accelerated weathering, carbon fiber, composites, polyamide 6, ultraviolet radiation

References

1 Alshammari, B. A., Alsuhybani, M. S., Almushaikeh, A. M., Alotaibi, B. M., Alenad, A. M., Alqahtani, N. B., & Alharbi, A. G. (2021). Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymer, 13(15), 2474. http://dx.doi.org/10.3390/polym13152474. PMid:34372077.

2 Montagna, L. S., Morgado, G. F. M., Lemes, A. P., Passador, F. R., & Rezende, M. C. (2002). Recycling of carbon fiber-reinforced thermoplastic and thermoset composites: a review. Journal of Thermoplastic Composite Materials, 36(8), 3455-3480. http://dx.doi.org/10.1177/08927057221108912.

3 American Institute of Aeronautics and Astronautics. (2023). Buckling tolerance design of aircraft fuselage using carbon fiber reinforced thermoplastic (CFRTP). USA: American Institute of Aeronautics and Astronautics, Inc.

4 Goh, G. D., Toh, W., Yap, Y. L., Ng, T. Y., & Yeong, W. Y. (2021). Additively manufactured continuous carbon fiber-reinforced thermoplastic for topology optimized unmanned aerial vehicle structures. Composites. Part B, Engineering, 216, 108840. http://dx.doi.org/10.1016/j.compositesb.2021.108840.

5 Sarfraz, M. S., Hong, H., & Kim, S. S. (2021). Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: areview study. Composite Structures, 266, 113864. http://dx.doi.org/10.1016/j.compstruct.2021.113864.

6 Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade: a review. Materials Today: Proceedings, 5(1), 2635-2640. http://dx.doi.org/10.1016/j.matpr.2018.01.043.

7 Wang, F. (2021). Application of new carbon fiber material in sports equipment. IOP Conference Series. Earth and Environmental Science, 714(3), 032064. http://dx.doi.org/10.1088/1755-1315/714/3/032064.

8 Ray, S., & Cooney, R. P. (2018). Thermal Degradation of Polymer and Polymer Composites. In M. Kutz (Ed.), Handbook of environmental degradation of materials (pp. 185-206). India: William Andrew. http://dx.doi.org/10.1016/B978-0-323-52472-8.00009-5

9 Sang, L., Wang, Y., Wang, C., Peng, X., Hou, W., & Tong, L. (2019). Moisture diffusion and damage characteristics of carbon fabric reinforced polyamide 6 laminates under hydrothermal aging. Composites. Part A, Applied Science and Manufacturing, 123, 242-252. http://dx.doi.org/10.1016/j.compositesa.2019.05.023.

10 Afshar, A., Alkhader, M., Korach, C. S., & Chiang, F. (2015). Effect of long-term exposure to marine environments on the flexural properties of carbon fiber vinylester composites. Composite Structures, 126, 72-77. http://dx.doi.org/10.1016/j.compstruct.2015.02.008.

11 Pavlenko, V. I., Zabolotny, V. T., Cherkashina, N. I., & Edamenko, O. D. (2014). Effect of vacuum ultraviolet on the surface properties of high-filled polymer composites. Inorganic Materials: Applied Research, 5(3), 219-223. http://dx.doi.org/10.1134/S2075113314030137.

12 Ching, Y. C., Gunathilake, T. M. S. U., Ching, K. Y., Chuah, C. H., Sandu, V., Singh, R., & Liou, N. (2019). Effects of high temperature and ultraviolet radiation on polymer composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites (pp. 407-426). UK: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102290-0.00018-0

13 Awaja, F., Nguyen, M.-T., Zhang, S., & Arhatari, B. (2011). The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro–CT. Composites. Part A, Applied Science and Manufacturing, 42(4), 408-418. http://dx.doi.org/10.1016/j.compositesa.2010.12.015.

14 Chin, J. W. (2007). Durability of composites exposed to ultraviolet radiation. Durability of Composites for Civil Structural Applications. In V. M. Karbhari (Ed.), Durability of composites for civil structural applications (pp. 80-97). UK: Woodhead Publishing Limited. http://dx.doi.org/10.1533/9781845693565.1.80

15 Troughton, M. J. (2009). Polyamides. In M. J. Troughton (Ed.), Handbook of plastics joining: a practical guide (pp. 251-281). USA: William Andrew Inc. http://dx.doi.org/10.1016/B978-0-8155-1581-4.50027-5

16 Kondo, M. Y., Montagna, L. S., Morgado, G. F. M., Castilho, A. L. G., Batista, L. A. P. S., Botelho, E. C., Costa, M. L., Passador, F. R., Rezende, M. C., & Ribeiro, M. V. (2022). Recent advances in the use of Polyamide-based materials for the automotive industry. Polímeros Ciência e Tecnologia, 32(2), e2022023. http://dx.doi.org/10.1590/0104-1428.20220042.

17 Kroes, G. H. (1963). The photo-oxidation of nylon 6 and 66. Recueil des Travaux Chimiques des Pays-Bas (Leiden, Netherlands), 82(10), 979-987. http://dx.doi.org/10.1002/recl.19630821006.

18 McK, J. F. (1976). Photodegradation, photo-oxidation and photostabilization of polymers: B. Ranby and J.F. Rabek, John Wiley, London, New York, Sydney and Toronto, 1975, pp. xv + 573, price £16.50. Journal of Molecular Structure, 33(1), 152-153. http://dx.doi.org/10.1016/0022-2860(76)80158-5.

19 Ishak, Z. A. M., & Berry, J. P. (1994). Hygrothermal aging studies of short carbon fiber reinforced nylon 6.6. Journal of Applied Polymer Science, 51(13), 2145-2155. http://dx.doi.org/10.1002/app.1994.070511306.

20 Lei, Y., Zhang, T., Zhang, J., & Zhang, B. (2021). Dimensional stability and mechanical performance evolution of continuous carbon fiber reinforced polyamide 6 composites under hygrothermal environment. Journal of Materials Research and Technology, 13, 2126-2137. http://dx.doi.org/10.1016/j.jmrt.2021.06.012.

21 Sang, L., Wang, C., Wang, Y., & Hou, W. (2018). Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites. Composites. Part B, Engineering, 153, 306-314. http://dx.doi.org/10.1016/j.compositesb.2018.08.138.

22 Pinpathomrat, B., Yamada, K., & Yokoyama, A. (2020). The efect of UV irradiation on polyamide 6/carbon-fber composites based on three-dimensional printing. SN Applied Sciences, 2(9), 1518. http://dx.doi.org/10.1007/s42452-020-03319-4.

23 Montagna, L.S., Morgado, G.F.M., Santos, L.F.P., Guimarães, A., Passador, F.R., & Rezende, M.C. (2023). Mechanical performance of carbon fiber/polyamide 6: comparative study between conditioning in distilled water with heating and saline solution. Materials Research, In press.

24 Khanna, Y. P., & Kuhn, W. P. (1997). Measurement of crystalline index in nylons by DSC: complexities and recommendations. Journal of Polymer Science. Part B, Polymer Physics, 35(14), 2219-2231. http://dx.doi.org/10.1002/(SICI)1099-0488(199710)35:14<2219::AID-POLB3>3.0.CO;2-R.

25 American Society for Testing and Materials – ASTM. (2008). ASTM D3039/D3039M-08: standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM.

26 American Society for Testing and Materials – ASTM. (2013). ASTM D2344/D2344M-13: standard test method for short-beam strength of polymer matrix composite materials and their laminates. West Conshohocken: ASTM.

27 Hein, L. R. O., Campos, K. A., Caltabiano, P. C. R. O., & Kostov, K. G. (2013). A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites. Scanning, 35(3), 196-204. http://dx.doi.org/10.1002/sca.21048. PMid:22915360.

28 Fernández-Rosas, E., Pomar-Portillo, V., González-Gálvez, D., Vilar, G., & Vázquez-Campos, S. (2020). Release mechanisms for PA6 nanocomposites under weathering conditions simulating their outdoor uses. NanoImpact, 20, 100260. http://dx.doi.org/10.1016/j.impact.2020.100260.

29 Batista, N. L., Faria, M. C. M., Iha, K., Oliveira, P. C., & Botelho, E. C. (2013). Influence of water immersion and ultraviolet weathering on mechanical and viscoelastic properties of polyphenylene sulfide– carbon fiber composites. Journal of Thermoplastic Composite Materials, 28(3), 340-356. http://dx.doi.org/10.1177/0892705713484747.

30 Lim, L., Britt, I. J., & Tung, M. A. (1999). Sorption and transport of water vapor in nylon 6,6 film. Journal of Applied Polymer Science, 71(2), 197-206. http://dx.doi.org/10.1002/(SICI)1097-4628(19990110)71:2<197::AID-APP2>3.0.CO;2-J.

31 Oulidi, O., Nakkabi, A., Elaraaj, I., Fahim, M., & El Moualij, N. (2022). Incorporation of olive pomace as a natural filler in to the PA6 matrix: effect on the structure and thermal properties of synthetic Polyamide 6. Chemical Engineering Journal Advances, 12, 100399. http://dx.doi.org/10.1016/j.ceja.2022.100399.

32 Mahat, K. B., Alarifi, I., Alharbi, A., & Asmatulu, R. (2016). Effects of UV light on mechanical properties of carbon fiber reinforced PPS thermoplastic composites. Macromolecular Symposia, 365(1), 157-168. http://dx.doi.org/10.1002/masy.201650015.

33 Mazur, R. L., Oliveira, P. C., Rezende, M. C., & Botelho, E. C. (2014). Environmental effects on viscoelastic behavior of carbon fiber/PEKK thermoplastic composites. Journal of Reinforced Plastics and Composites, 33(8), 749-757. http://dx.doi.org/10.1177/0731684413515955.

34 Godara, A., Raabe, D., & Green, S. (2007). The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomaterialia, 3(2), 209-220. http://dx.doi.org/10.1016/j.actbio.2006.11.005. PMid:17236831.

35 Pillay, S., Vaidya, U. K., & Janowski, G. M. (2009). Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates. Composites Science and Technology, 69(6), 839-846. http://dx.doi.org/10.1016/j.compscitech.2008.03.021.
 

657b0a59a953955ee14a1b73 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections