Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230054
Polímeros: Ciência e Tecnologia
Original Article

Hydrophobic polyurethane foams reinforced with microcrystalline cellulose for oil spill clean up

Matheus Vinícius Gregory Zimmermann; Eduardo Junca; Marina Kauling de Almeida; Lara Vasconcellos Ponsoni; Ademir José Zattera; Tiago Mari; Ruth Marlene Campomanes Santana

Downloads: 0
Views: 564

Abstract

Oil spills into water have been an environmental concern since the beginning of large-scale oil extraction. In this study, flexible open-cell polyurethane (PU) foams with added microcrystalline cellulose (MCC) were formulated and chemically modified with organosilane for use as an absorbent system for oil spill cleanup in water. The influence of cellulose concentration on mechanical properties and chemical treatment with organosilane was evaluated. The primary findings indicate that the surface treatment of the solid fraction of the foams was effective, as indicated by the contact angle, increasing the hydrophobicity of the samples. Because of the increased roughness of the PU solid fraction and the cellulose reactivity, the mechanical compressive strength and thickness of the organosilane layer increased with increasing MCC content. However, the higher the MCC content in the composition, the higher was the density, which reduced the sorption capacity of the samples.

 

Keywords

polyurethane fomas, oil spill cleanup, organosilane, cellulose

References

1 ITOPF. (2023). Oil tanker spill statistics 2022. Retrieved in 2023, April 25, from https://www.itopf.org/knowledge-resources/data-statistics/statistics/

2 Wan, Z., & Chen, J. (2018). Human errors are behind most oil-tanker spills. Nature, 560(7717), 161-163. http://dx.doi.org/10.1038/d41586-018-05852-0. PMid:30082696.

3 Zhang, M., Su, M., Qin, Y., Liu, C., Shen, C., Ma, J., & Liu, X. (2023). Photothermal ultra-high molecular weight polyethylene/MXene aerogel for crude oil adsorption and water evaporation. 2D Materials, 10(2), 024007. http://dx.doi.org/10.1088/2053-1583/acc3aa.

4 Ivshina, I. B., Kuyukina, M. S., Krivoruchko, A. V., Elkin, A. A., Makarov, S. O., Cunningham, C. J., Peskur, T. A., Atlas, R. M., & Philip, J. C. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science. Processes & Impacts, 17(7), 1201-1219. http://dx.doi.org/10.1039/C5EM00070J. PMid:26089295.

5 Lim, T.-T., & Huang, X. (2007). Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 66(5), 955-963. http://dx.doi.org/10.1016/j.chemosphere.2006.05.062. PMid:16839589.

6 Centro de Recursos Ambientais – CRA. (2002). Ecotoxicologia e avaliação de risco do petróleo. Salvador: CRA. Retrieved in 2023, April 25, from http://www.w2s3.com.br/download/Ecotoxicologia%20e%20Avaliacao%20de%20Risco%20do%20Petroleo.pdf

7 Zimmermann, M. V. G., Zattera, A. J., Fenner, B. R., & Santana, R. M. C. (2021). Sorbent system based on organosilane-coated polyurethane foam for oil spill clean up. Polymer Bulletin, 78(3), 1423-1440. http://dx.doi.org/10.1007/s00289-020-03169-5.

8 Duong, H. T. T., & Burford, R. P. (2006). Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane. Journal of Applied Polymer Science, 99(1), 360-367. http://dx.doi.org/10.1002/app.22426.

9 Liu, Y., Ma, J., Wu, T., Wang, X., Huang, G., Liu, Y., Qiu, H., Li, Y., Wang, W., & Gao, J. (2013). Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Applied Materials & Interfaces, 5(20), 10018-10026. http://dx.doi.org/10.1021/am4024252. PMid:24050505.

10 Bayat, A., Aghamiri, S. F., Moheb, A., & Vakili-Nezhaad, G. R. (2005). Oil spill cleanup from sea water by sorbent materials. Chemical Engineering & Technology, 28(12), 1525-1528. http://dx.doi.org/10.1002/ceat.200407083.

11 Chung, S., Suidan, M. T., & Venosa, A. D. (2011). Partially Acetylated Sugarcane Bagasse for Wicking Oil from Contaminated Wetlands. Chemical Engineering & Technology, 34(12), 1989-1996. http://dx.doi.org/10.1002/ceat.201100353.

12 Andersons, J., Kirpluks, M., & Cabulis, U. (2020). Reinforcement efficiency of cellulose microfibers for the tensile stiffness and strength of rigid low-density polyurethane foams. Materials (Basel), 13(12), 2725. http://dx.doi.org/10.3390/ma13122725. PMid:32549317.

13 Jianliang, X., Nana, L., Xinfeng, X., Yu, B., Yu, G., Kunhua, W., Xiangming, H., Dongle, C., & Qing, J. (2022). Durable hydrophobic Enteromorpha design for controlling oil spills in marine environment prepared by organosilane modification for efficient oil-water separation. Journal of Hazardous Materials, 421, 126824. http://dx.doi.org/10.1016/j.jhazmat.2021.126824. PMid:34396973.

14 Usman, J., Othman, M., Ismail, A. F., Rahman, M. A., Jaafar, J., Raji, Y. O., El Badawy, T. H., Gbadamosi, A. O., & Kurniawan, T. A. (2020). Impact of organosilanes modified superhydrophobic-superoleophilic kaolin ceramic membrane on efficiency of oil recovery from produced water. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 95(12), 3300-3315. http://dx.doi.org/10.1002/jctb.6554.

15 Salon, M.-C. B., Abdelmouleh, M., Boufi, S., Belgacem, M. N., & Gandini, A. (2005). Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. Journal of Colloid and Interface Science, 289(1), 249-261. http://dx.doi.org/10.1016/j.jcis.2005.03.070. PMid:15907861.

16 Abdelmouleh, M., Boufi, S., Ben Salah, A., Belgacem, M. N., & Gandini, A. (2002). Interaction of silane coupling agents with cellulose. Langmuir, 18(8), 3203-3208. http://dx.doi.org/10.1021/la011657g.

17 Shan, C. W., Idris, M. I., & Ghazali, M. I. (2012). Study of flexible polyurethane foams reinforced with coir fibres and tyre particles. International Journal of Applied Physics and Mathematics, 2(2), 123-123. http://dx.doi.org/10.7763/IJAPM.2012.V2.67.

18 Zimmermann, M. V. G., Turella, T., Santana, R. M. C., & Zattera, A. J. (2014). Comparative study between poly(ethylene-co-vinyl acetate) – EVA expanded composites filled with banana fiber and wood flour. Materials Research, 17(6), 1535-1544. http://dx.doi.org/10.1590/1516-1439.269814.

19 Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B., & Oksman, K. (2010). Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose (London, England), 17(2), 299-307. http://dx.doi.org/10.1007/s10570-009-9387-9.

20 Goussé, C., Chanzy, H., Cerrada, M. L., & Fleury, E. (2004). Surface silytation of celulose microfibrils: preparation and rheological properties. Polymer, 45(5), 1569-1575. http://dx.doi.org/10.1016/j.polymer.2003.12.028.

21 Kuboki, T., Lee, Y. H., Park, C. B., & Sain, M. (2009). Mechanical properties and foaming behavior of cellulose fiber reinforced high-density polyethylene composites. Polymer Engineering and Science, 49(11), 2179-2188. http://dx.doi.org/10.1002/pen.21464.

22 Trache, D., Hussin, M. H., Chuin, C. T. H., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. (2016). Microcrystalline cellulose: isolation, characterization and bio-composites application – A review. International Journal of Biological Macromolecules, 93(Pt A), 789-804. http://dx.doi.org/10.1016/j.ijbiomac.2016.09.056.

23 Hussain, S., & Kortschot, M. T. (2015). Polyurethane foam mechanical reinforced by low-aspect ratio micro-crystalline cellulose and glass fibres. Journal of Cellular Plastics, 51(1), 59-73. http://dx.doi.org/10.1177/0021955X14529137.

24 Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Marine Pollution Bulletin, 64(8), 1648-1653. http://dx.doi.org/10.1016/j.marpolbul.2012.05.039. PMid:22749062.

25 Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H., & Kim, J. H. (2010). Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composite. Composites. Part A, Applied Science and Manufacturing, 41(10), 1491-1497. http://dx.doi.org/10.1016/j.compositesa.2010.06.011.

26 Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, M. E., & Jeelani, S. (2005). Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Materials Science and Engineering A, 406(1-2), 328-336. http://dx.doi.org/10.1016/j.msea.2005.07.006.

27 Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties. USA: Cambridge University Press.. http://dx.doi.org/10.1017/CBO9781139878326.

28 Borsoi, C., Zimmermann, M. V. G., Zattera, A. J., Santana, R. M. C., & Ferreira, C. A. (2016). Thermal degradation behavior of cellulose nanofibers and nanowhiskers. Journal of Thermal Analysis and Calorimetry, 126(3), 1867-1878. http://dx.doi.org/10.1007/s10973-016-5653-x.

29 Wu, Z.-Y., Li, C., Liang, H.-W., Chen, J.-F., & Yu, S.-H. (2013). Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie International Edition in English, 52(10), 2925-2929. http://dx.doi.org/10.1002/anie.201209676. PMid:23401382.

30 Cunha, A. G., Freire, C., Silvestre, A., Pascoal, C., No., Gandini, A., Belgacem, M. N., Chaussy, D., & Beneventi, D. (2010). Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Journal of Colloid and Interface Science, 344(2), 588-595. http://dx.doi.org/10.1016/j.jcis.2009.12.057. PMid:20129622.
 

65ce03aea953953d807e73a2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections