Pectin-based films with thyme essential oil: production, characterization, antimicrobial activity, and biodegradability
Greice Ribeiro Furlan; Wendel Paulo Silvestre; Camila Baldasso
Abstract
Keywords
References
1 Platt, D. (2006).
2 Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: structure, preparation method, and application in food industry.
3 Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits.
4 Falleh, H., Ben Jemaa, M., Saada, M., & Ksouri, R. (2020). Essential oils: a promising eco-friendly food preservative.
5 Batista, J. A. (2004).
6 Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. J., Soares, N. F. F., & McHugh, T. H. (2014). Edible films from pectin: physical-mechanical and antimicrobial properties - a review.
7 Miranda, M., Sun, X., Ference, C., Plotto, A., Bai, J., Wood, D., Assis, O. B. G., Ferreira, M. D., & Baldwin, E. (2021). Nano- and micro- carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality.
8 Parris, N., Coffin, D. R., Joubran, R. F., & Pessen, H. (1995). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films.
9 Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films.
10 Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. M., & Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage.
11 Cervera, M. F., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., Colarte, A. I., & Yliruusi, J. (2004). Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols.
12 Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films.
13 Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils.
14 Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef.
15 Leonardelli, C., Silvestre, W. P., & Baldasso, C. (2020). Effect of chitosan addition in whey-based biodegradable films.
16 Macleod, G. S., Fell, J. T., & Collett, J. H. (1997). Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery.
17 Meydanju, N., Pirsa, S., & Farzi, J. (2022). Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: investigation of physicochemical and antibacterial properties.
18 Imeson, A. (2010).
19 May, C. D. (1990). Industrial pectins: sources, production and applications.
20 Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., & Von Wright, A. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria.
21 Zheng, Z. L., Tan, J. Y. W., Liu, H. Y., Zhou, X. H., Xiang, X., & Wang, K. Y. (2009). Evaluation of oregano essential oil (
22 Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils.
23 Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation.
24 Zivanovic, S., Chi, S., & Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils.
25 Santos, V. S., Aouada, F. A., & Moura, M. R. (2018). Incorporation of polymeric nanoparticles and garlic essential oil in pectin-based films for edible packaging. In
26 Pirouzifard, M., Yorghanlu, R. A., & Pirsa, S. (2020). Production of active film based on potato starch containing Zedo gum and essential oil of
27 Igarashi, M. C. (2010).
28 Souza, A. C. (2011).
29 Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water.
30 Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Pectin-based biodegradable water insoluble films.
31 Slavutsky, A. M., Gamboni, J. E., & Bertuzzi, M. A. (2018). Formulation and characterization of bilayer films based on Brea gum and Pectin.
32 McHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation.
33 Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., & Friedman, M. (2009). Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities.
34 Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan-tea tree essential oil composite films.
35 Bona, E. A. M., Pinto, F. G. S., Fruet, T. K., Jorge, T. C. M., & Moura, A. C. (2014). Comparison of methods for evaluating antimicrobial activity and determining the minimum inhibitory concentration (MIC) of aqueous and ethanolic plant extracts.
36 Bierhalz, A. C. K. (2010).
37 Tong, W. Y., Rafiee, A. R. A., Leong, C. R., Tan, W.-N., Dailin, D. J., Almarhoon, Z. M., Shelkh, M., Nawaz, A., & Chuah, L. F. (2023). Development of sodium alginate-pectin biodegradable active food packaging film containing cinnamic acid.
38 Silva, W. A., Pereira, J., Carvalho, C. W. P., & Ferrua, F. Q. (2007). Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources.
39 Melo, P. T. S., Aouada, F. A., & Moura, M. R. (2017). Fabricação de filmes bionanocompósitos à base de pectina e polpa de cacau com potencial uso como embalagem para alimentos.
40 Camargo, L. A., Moreira, F. K. V., Marconcini, J. M., & Mattoso, L. H. C. (2013). Avaliação do efeito de plastificante induzido pelo glicerol em filmes de pectina reforçados com nanopartículas de Mg(OH)2. In
41 Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A. P. L., Pauletti, G. F., & Barcellos, T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: in vitro and in vivo evaluation against phytopathogenic fungi.
42 Gorjian, H., Mihankhah, P., & Khaligh, N. G. (2022). Influence of tween nature and type on physicochemical properties and stability of spearmint essential oil (
43 Sousa, C. P. (2006). Food safety and food-borne diseases: using the coliform group as an indicator of food quality.
44 Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (
45 Lorevice, M. V. (2019).
46 Caetano, K. S. (2006).
47 Aitboulahsen, M., El Galiou, O., Laglaoui, A., Bakkali, M., & Zerrouk, M. H. (2020). Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films.
48 Syafiq, R., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Nazrin, A., Sherwani, S. F. K., & Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review.
49 Braskem. (2002).
50 Ngo, T. M. P., Nguyen, T. H., Dang, T. M. Q., Tran, T. X., & Rachtanapun, P. (2020). Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan.
51 Isotton, F. S. (2013).
52 Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties.
53 Ezati, P., & Rhim, J.-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles.
54 Sriamornsak, P., Wattanakorn, N., Nunthanid, J., & Puttipipatkhachorn, S. (2008). Mucoadhesion of pectin as evidence by wettability and chain interpenetration.
55 Law, K.-Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right.
56 Pagno, C. H. (2016).
57 Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J. P., Tylewicz, U., & Lotti, N. (2018). Characterization of active edible films based on citral essential oil, alginate and pectin.
58 Kamnev, A. A., Colina, M., Rodriguez, J., Ptitchkina, N. M., & Ignatov, V. V. (1998). Comparative spectroscopic characterization of different pectins and their sources.
59 Norcino, L. B., Mendes, J. F., Natarelli, C. V. L., Manrich, A., Oliveira, J. E., & Mattoso, L. H. C. (2020). Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging.
60 Mendes, J. F., Norcino, L. B., Martins, H. H. A., Manrich, A., Otoni, C. G., Carvalho, E. E. N., Piccoli, R. H., Oliveira, J. E., Pinheiro, A. C. M., & Mattoso, L. H. C. (2020). Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil.
61 Grisa, A. M. C., Sirena, M. C., Zini, A., Brancher, L. R., Zeni, M., & Nunes, M. F. O. (2019). Characterization of non-structural poly (vinyl) chloride, rock wool and medium density fiberboard waste composites.