In-situ polymerized Pebax®/polydopamine blend membranes with high CO2/N2 selectivity
Ariele dos Santos Pirola; Paula Sacchelli Pacheco; Sônia Faria Zawadski; Daniel Eiras
Abstract
Keywords
References
1 Sreedhar, I., Vaidhiswaran, R., Kamani, B. M., & Venugopal, A. (2017). Process and engineering trends in membrane based carbon capture.
2 Favre, E. (2022). Membrane separation processes and post-combustion carbon capture: state of the art and prospects.
3 Janakiram, S., Santinelli, F., Costi, R., Lindbråthen, A., Nardelli, G. M., Milkowski, K., Ansaloni, L., & Deng, L. (2021). Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry.
4 Kanehashi, S., & Scholes, C. A. (2020). Perspective of mixed matrix membranes for carbon capture.
5 Freeman, B. D. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes.
6 Mondal, A., Barooah, M., & Mandal, B. (2015). Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane.
7 Wu, H., Li, X., Li, Y., Wang, S., Guo, R., Jiang, Z., Wu, C., Xin, Q., & Lu, X. (2014). Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties.
8 Kojabad, M. E., Babaluo, A. A., & Tavakoli, A. (2021). A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study.
9 Chen, S., Zhou, T., Wu, H., Wu, Y., & Jiang, Z. (2017). Embedding molecular amine functionalized polydopamine submicroparticles into polymeric membrane for carbon capture.
10 Zhao, Y., & Ho, W. S. W. (2012). Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport.
11 Zhao, Y., & Ho, W. S. W. (2013). CO2-selective membranes containing sterically hindered amines for CO2/H2 separation.
12 Zhu, B., He, S., Wu, Y., Li, S., & Shao, L. (2023). One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture.
13 Zhang, Y., Shen, Y., Hou, J., Zhang, Y., Fam, W., Liu, J., Bennett, T. D., & Chen, V. (2018). Ultraselective Pebax membranes enabled by templated microphase separation.
14 Wu, Y., Zhao, D., Ren, J., Qiu, Y., Feng, Y., & Deng, M. (2021). Effect of triglyceride on the microstructure and gas permeation performance of Pebax-based blend membranes.
15 Wang, S., Liu, Y., Huang, S., Wu, H., Li, Y., Tian, Z., & Jiang, Z. (2014). Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties.
16 Selyanchyn, O., Selyanchyn, R., & Fujikawa, S. (2020). Critical role of the molecular interface in Double-Layered Pebax-1657/PDMS nanomembranes for highly efficient CO2/N2 gas separation.
17 Pishva, S., & Hassanajili, S. (2022). Investigation on effect of ionic liquid on CO2 separation performance and properties of novel co-casted dual-layer PEBAX-ionic liquid/PES composite membrane.
18 Nobakht, D., & Abedini, R. (2022). Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds.
19 Car, A., Stropnik, C., Yave, W., & Peinemann, K.-V. (2008). Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases.
20 Shishatskiy, S., Pauls, J. R., Nunes, S. P., & Peinemann, K.-V. (2010). Quaternary ammonium membrane materials for CO2 separation.
21 Li, X., Ding, S., Zhang, J., & Wei, Z. (2020). Optimizing microstructure of polymer composite membranes by tailoring different ionic liquids to accelerate CO2 transport.
22 Jiang, H., Bai, L., Yang, B., Zeng, S., Dong, H., & Zhang, X. (2022). The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes.
23 Liebscher, J., Mrówczyński, R., Scheidt, H. A., Filip, C., Haìdade, N. D., Turcu, R., Bende, A., & Beck, S. (2013). Structure of polydopamine: a never-ending story?
24 Yu, X., Fan, H., Liu, Y., Shi, Z., & Jin, Z. (2014). Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine.
25 Coy, E., Iatsunskyi, I., Colmenares, J. C., Kim, Y., & Mrówczyński, R. (2021). Polydopamine films with 2D-like layered structure and high mechanical resilience.
26 Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation.
27 Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin.
28 Xu, Y., Wang, C., Yang, L., & Chang, G. (2019). Sandwich-like structure of indole and carbon dioxide with efficient CO2 capture and conversion.
29 Chang, G., Xu, Y., Zhang, L., & Yang, L. (2018). Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups.
30 Lee, H. M., Youn, I. S., Saleh, M., Lee, J. W., & Kim, K. S. (2015). Interactions of CO2 with various functional molecules.
31 Fang, M., Zhang, H., Chen, J., Wang, T., Liu, J., Li, X., Li, J., & Cao, X. (2016). A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation.
32 Yang, P., Zhang, S., Chen, X., Liu, X., Wang, Z., & Li, Y. (2020). Recent developments in polydopamine fluorescent nanomaterials.
33 Yue, Q., Wang, M., Sun, Z., Wang, C., Wang, C., Deng, Y., & Zhao, D. (2013). A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures.
34 Beiragh, H. H., Omidkhah, M., Abedini, R., Khosravi, T., & Pakseresht, S. (2016). Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation.
35 Luo, H., Gu, C., Zheng, W., Dai, F., Wang, X., & Zheng, Z. (2015). Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres.
36 Rahoui, N., Hegazy, M., Jiang, B., Taloub, N., & Huang, Y. D. (2018). Particles size estimation of polydopamine based polymeric nanoparticles using near-infrared spectroscopy combined with linear regression method.
37 Wu, J., Liang, C. Z., Naderi, A., & Chung, T.-S. (2022). Tunable supramolecular cavities molecularly homogenized in polymer membranes for ultraefficient precombustion CO2 capture.
38 Liu, Y., Li, X., Qin, Y., Guo, R., & Zhang, J. (2017). Pebax–polydopamine microsphere mixed-matrix membranes for efficient CO2 separation.
39 Wu, J., & Chung, T.-S. (2022). Supramolecular polymer network membranes with molecular-sieving nanocavities for efficient pre-combustion CO2 capture.
40 Nilouyal, S., Karahan, H. E., Isfahani, A. P., Yamaguchi, D., Gibbons, A. H., Ito, M. M. M., Sivaniah, E., & Ghalei, B. (2022). Carbonic anhydrase-mimicking supramolecular nanoassemblies for developing carbon capture membranes.
41 Sharma, P., Kim, Y.-J., Kim, M.-Z., Alam, S. F., & Cho, C. H. (2019). A stable polymeric chain configuration producing high performance PEBAX-1657 membranes for CO2 separation.
42 Zheng, Y., Wu, Y., Zhang, B., & Wang, Z. (2020). Preparation and characterization of CO2-selective Pebax/NaY mixed matrix membranes.
43 Bai, Y., Wu, G., Zhang, Q., Zhang, C., Gu, J., & Sun, Y. (2015). Effect of the ionic liquid [bmim]PF6 on the nonisothermal crystallization kinetics behavior of poly(ether-b-amide).
44 Li, P., Wang, Z., Li, W., Liu, Y., Wang, J., & Wang, S. (2015). High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.
45 Dong, G., Zhang, J., Wang, Z., Wang, J., Zhao, P., Cao, X., & Zhang, Y. (2019). Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance.