Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230045
Polímeros: Ciência e Tecnologia
Original Article

In-situ polymerized Pebax®/polydopamine blend membranes with high CO2/N2 selectivity

Ariele dos Santos Pirola; Paula Sacchelli Pacheco; Sônia Faria Zawadski; Daniel Eiras

Downloads: 0
Views: 494

Abstract

The objective of this work was to produce Pebax®/polydopamine (PDA) blends and apply these blends to produce membranes for gas separation. Flat sheet membranes were tested for gas permeation, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), wide angle x-ray diffraction (WAXD), scanning electron microscopy (SEM) and fourier transformed infrared spectroscopy (FTIR). The results show an optimal concentration of dopamine hydrochloride that produces the best results (𝛼=100, P=114 Barrer). DSC and WAXD results indicate that polydopamine influences the crystallization of Pebax®, reducing the melting and crystallization temperatures of PA blocks and increasing the melting temperature of PEO blocks. The incorporation of PDA decreases gas permeability and increases gas selectivity. The decrease in permeability indicates that the presence of polydopamine reduces the diffusion coefficient of Pebax® by reducing the segmental mobility of PEO blocks and possibly the fraction free volume. Compared to the trade-off, Pebax®/PDA membranes surpasses the upperbound for CO2/N2 separation.

Keywords

Pebax, polydopamine (PDA), in-situ polymerization, CO2 separation, polymer blends

References

1 Sreedhar, I., Vaidhiswaran, R., Kamani, B. M., & Venugopal, A. (2017). Process and engineering trends in membrane based carbon capture. Renewable & Sustainable Energy Reviews, 68(Part 1), 659-684. http://dx.doi.org/10.1016/j.rser.2016.10.025.

2 Favre, E. (2022). Membrane separation processes and post-combustion carbon capture: state of the art and prospects. Membranes, 12(9), 884. http://dx.doi.org/10.3390/membranes12090884.

3 Janakiram, S., Santinelli, F., Costi, R., Lindbråthen, A., Nardelli, G. M., Milkowski, K., Ansaloni, L., & Deng, L. (2021). Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry. Chemical Engineering Journal, 413, 127405. http://dx.doi.org/10.1016/j.cej.2020.127405.

4 Kanehashi, S., & Scholes, C. A. (2020). Perspective of mixed matrix membranes for carbon capture. Frontiers of Chemical Science and Engineering, 14(3), 460-469. http://dx.doi.org/10.1007/s11705-019-1881-5.

5 Freeman, B. D. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2), 375-380. http://dx.doi.org/10.1021/ma9814548.

6 Mondal, A., Barooah, M., & Mandal, B. (2015). Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 39, 27-38. http://dx.doi.org/10.1016/j.ijggc.2015.05.002.

7 Wu, H., Li, X., Li, Y., Wang, S., Guo, R., Jiang, Z., Wu, C., Xin, Q., & Lu, X. (2014). Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science, 465, 78-90. http://dx.doi.org/10.1016/j.memsci.2014.04.023.

8 Kojabad, M. E., Babaluo, A. A., & Tavakoli, A. (2021). A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study. Separation and Purification Technology, 266, 118494. http://dx.doi.org/10.1016/j.seppur.2021.118494.

9 Chen, S., Zhou, T., Wu, H., Wu, Y., & Jiang, Z. (2017). Embedding molecular amine functionalized polydopamine submicroparticles into polymeric membrane for carbon capture. Industrial & Engineering Chemistry Research, 56(28), 8103-8110. http://dx.doi.org/10.1021/acs.iecr.7b01546.

10 Zhao, Y., & Ho, W. S. W. (2012). Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. Journal of Membrane Science, 415-416, 132-138. http://dx.doi.org/10.1016/j.memsci.2012.04.044.

11 Zhao, Y., & Ho, W. S. W. (2013). CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial & Engineering Chemistry Research, 52(26), 8774-8782. http://dx.doi.org/10.1021/ie301397m.

12 Zhu, B., He, S., Wu, Y., Li, S., & Shao, L. (2023). One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture. Engineering, 26, 220-228. http://dx.doi.org/10.1016/j.eng.2022.03.016.

13 Zhang, Y., Shen, Y., Hou, J., Zhang, Y., Fam, W., Liu, J., Bennett, T. D., & Chen, V. (2018). Ultraselective Pebax membranes enabled by templated microphase separation. ACS Applied Materials & Interfaces, 10(23), 20006-20013. http://dx.doi.org/10.1021/acsami.8b03787.

14 Wu, Y., Zhao, D., Ren, J., Qiu, Y., Feng, Y., & Deng, M. (2021). Effect of triglyceride on the microstructure and gas permeation performance of Pebax-based blend membranes. Separation and Purification Technology, 256, 117824. http://dx.doi.org/10.1016/j.seppur.2020.117824.

15 Wang, S., Liu, Y., Huang, S., Wu, H., Li, Y., Tian, Z., & Jiang, Z. (2014). Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 460, 62-70. http://dx.doi.org/10.1016/j.memsci.2014.02.036.

16 Selyanchyn, O., Selyanchyn, R., & Fujikawa, S. (2020). Critical role of the molecular interface in Double-Layered Pebax-1657/PDMS nanomembranes for highly efficient CO2/N2 gas separation. ACS Applied Materials & Interfaces, 12(29), 33196-33209. http://dx.doi.org/10.1021/acsami.0c07344.

17 Pishva, S., & Hassanajili, S. (2022). Investigation on effect of ionic liquid on CO2 separation performance and properties of novel co-casted dual-layer PEBAX-ionic liquid/PES composite membrane. Journal of Industrial and Engineering Chemistry, 107, 180-196. http://dx.doi.org/10.1016/j.jiec.2021.11.046.

18 Nobakht, D., & Abedini, R. (2022). Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds. Journal of Environmental Chemical Engineering, 10(3), 107568. http://dx.doi.org/10.1016/j.jece.2022.107568.

19 Car, A., Stropnik, C., Yave, W., & Peinemann, K.-V. (2008). Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Separation and Purification Technology, 62(1), 110-117. http://dx.doi.org/10.1016/j.seppur.2008.01.001.

20 Shishatskiy, S., Pauls, J. R., Nunes, S. P., & Peinemann, K.-V. (2010). Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 359(1–2), 44-53. http://dx.doi.org/10.1016/j.memsci.2009.09.006.

21 Li, X., Ding, S., Zhang, J., & Wei, Z. (2020). Optimizing microstructure of polymer composite membranes by tailoring different ionic liquids to accelerate CO2 transport. International Journal of Greenhouse Gas Control, 101, 103136. http://dx.doi.org/10.1016/j.ijggc.2020.103136.

22 Jiang, H., Bai, L., Yang, B., Zeng, S., Dong, H., & Zhang, X. (2022). The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes. Chinese Journal of Chemical Engineering, 43, 169-176. http://dx.doi.org/10.1016/j.cjche.2022.02.006.

23 Liebscher, J., Mrówczyński, R., Scheidt, H. A., Filip, C., Haìdade, N. D., Turcu, R., Bende, A., & Beck, S. (2013). Structure of polydopamine: a never-ending story? Langmuir, 29(33), 10539-10548. http://dx.doi.org/10.1021/la4020288.

24 Yu, X., Fan, H., Liu, Y., Shi, Z., & Jin, Z. (2014). Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir, 30(19), 5497-5505. http://dx.doi.org/10.1021/la500225v.

25 Coy, E., Iatsunskyi, I., Colmenares, J. C., Kim, Y., & Mrówczyński, R. (2021). Polydopamine films with 2D-like layered structure and high mechanical resilience. ACS Applied Materials & Interfaces, 13(19), 23113-23120. http://dx.doi.org/10.1021/acsami.1c02483.

26 Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22(22), 4711-4717. http://dx.doi.org/10.1002/adfm.201201156.

27 Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter, 5(19), 3754-3760. http://dx.doi.org/10.1039/b902507c.

28 Xu, Y., Wang, C., Yang, L., & Chang, G. (2019). Sandwich-like structure of indole and carbon dioxide with efficient CO2 capture and conversion. ACS Applied Polymer Materials, 1(12), 3389-3395. http://dx.doi.org/10.1021/acsapm.9b00808.

29 Chang, G., Xu, Y., Zhang, L., & Yang, L. (2018). Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups. Polymer Chemistry, 9(35), 4455-4459. http://dx.doi.org/10.1039/C8PY00936H.

30 Lee, H. M., Youn, I. S., Saleh, M., Lee, J. W., & Kim, K. S. (2015). Interactions of CO2 with various functional molecules. Physical Chemistry Chemical Physics, 17(16), 10925-10933. http://dx.doi.org/10.1039/C5CP00673B.

31 Fang, M., Zhang, H., Chen, J., Wang, T., Liu, J., Li, X., Li, J., & Cao, X. (2016). A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation. Journal of Membrane Science, 499, 290-300. http://dx.doi.org/10.1016/j.memsci.2015.10.046.

32 Yang, P., Zhang, S., Chen, X., Liu, X., Wang, Z., & Li, Y. (2020). Recent developments in polydopamine fluorescent nanomaterials. Materials Horizons, 7(3), 746-761. http://dx.doi.org/10.1039/C9MH01197H.

33 Yue, Q., Wang, M., Sun, Z., Wang, C., Wang, C., Deng, Y., & Zhao, D. (2013). A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 1(44), 6085-6093. http://dx.doi.org/10.1039/c3tb21028f.

34 Beiragh, H. H., Omidkhah, M., Abedini, R., Khosravi, T., & Pakseresht, S. (2016). Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific Journal of Chemical Engineering, 11(4), 522-532. http://dx.doi.org/10.1002/apj.1973.

35 Luo, H., Gu, C., Zheng, W., Dai, F., Wang, X., & Zheng, Z. (2015). Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances, 5(18), 13470-13477. http://dx.doi.org/10.1039/C4RA16469E.

36 Rahoui, N., Hegazy, M., Jiang, B., Taloub, N., & Huang, Y. D. (2018). Particles size estimation of polydopamine based polymeric nanoparticles using near-infrared spectroscopy combined with linear regression method. American Journal of Analytical Chemistry, 9(5), 273-285. http://dx.doi.org/10.4236/ajac.2018.95021.

37 Wu, J., Liang, C. Z., Naderi, A., & Chung, T.-S. (2022). Tunable supramolecular cavities molecularly homogenized in polymer membranes for ultraefficient precombustion CO2 capture. Advanced Materials, 34(3), 2105156. http://dx.doi.org/10.1002/adma.202105156.

38 Liu, Y., Li, X., Qin, Y., Guo, R., & Zhang, J. (2017). Pebax–polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 134(10), app.44564. http://dx.doi.org/10.1002/app.44564.

39 Wu, J., & Chung, T.-S. (2022). Supramolecular polymer network membranes with molecular-sieving nanocavities for efficient pre-combustion CO2 capture. Small Methods, 6(1), 2101288. http://dx.doi.org/10.1002/smtd.202101288.

40 Nilouyal, S., Karahan, H. E., Isfahani, A. P., Yamaguchi, D., Gibbons, A. H., Ito, M. M. M., Sivaniah, E., & Ghalei, B. (2022). Carbonic anhydrase-mimicking supramolecular nanoassemblies for developing carbon capture membranes. ACS Applied Materials & Interfaces, 14(33), 37595-37607. http://dx.doi.org/10.1021/acsami.2c06270.

41 Sharma, P., Kim, Y.-J., Kim, M.-Z., Alam, S. F., & Cho, C. H. (2019). A stable polymeric chain configuration producing high performance PEBAX-1657 membranes for CO2 separation. Nanoscale Advances, 1(7), 2633-2644. http://dx.doi.org/10.1039/C9NA00170K.

42 Zheng, Y., Wu, Y., Zhang, B., & Wang, Z. (2020). Preparation and characterization of CO2-selective Pebax/NaY mixed matrix membranes. Journal of Applied Polymer Science, 137(9), 48398. http://dx.doi.org/10.1002/app.48398.

43 Bai, Y., Wu, G., Zhang, Q., Zhang, C., Gu, J., & Sun, Y. (2015). Effect of the ionic liquid [bmim]PF6 on the nonisothermal crystallization kinetics behavior of poly(ether-b-amide). Journal of Applied Polymer Science, 132(25), app.42137. http://dx.doi.org/10.1002/app.42137.

44 Li, P., Wang, Z., Li, W., Liu, Y., Wang, J., & Wang, S. (2015). High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Applied Materials & Interfaces, 7(28), 15481-15493. http://dx.doi.org/10.1021/acsami.5b03786.

45 Dong, G., Zhang, J., Wang, Z., Wang, J., Zhao, P., Cao, X., & Zhang, Y. (2019). Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance. ACS Applied Materials & Interfaces, 11(21), 19613-19622. http://dx.doi.org/10.1021/acsami.9b02281.
 

65ce041ca953953d8f6fc223 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections