Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230043
Polímeros: Ciência e Tecnologia
Original Article

Development of mulch films from biodegradable polymer and agro-industrial waste

Railha Antunes de França; Ana Carolina Ferreira dos Santos Rosa; Cristiano José de Farias Braz; Renata Barbosa; Tatianny Soares Alves

Downloads: 1
Views: 564

Abstract

Plasticulture improves crop quality and yield through polymeric films, but their improper disposal harms the environment due to humidity and contamination. This study aimed to develop biodegradable mulch films using soybean and peanut hulls and poly (butylene-adipate-co-terephthalate) (PBAT). The residues were characterized by thermogravimetric analysis and mulch films were evaluated by water absorption, contact angle and mechanical properties. The thermal behavior of the residues indicated stability below 200ºC. The agro-waste improved hydrophobicity but increased the water absorption values of the films by up to 18.5x (PBAT/SH5 after 14 days). Micrographs obtained by scanning electron microscopy indicated an important distribution of residue particles and formation of agglomerates, leading to lower mechanical performance. The study found that agro-industrial residues in powder form can be added to the polymeric matrix to produce biodegradable mulch films through traditional processing techniques. This approach has the potential to contribute to a more sustainable production system.

 

Keywords

PBAT, peanut, plasticulture, soybean, waste

References

1 Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., Chang, S. X., Zhang, L., Rinklebe, J., Yuan, Z., Zhu, Q., Xiang, L., Tsang, D. C. W., Xu, L., Jiang, X., Liu, J., Wei, N., Kastner, M., Zou, Y., Ok, Y. S., Shen, J., Peng, D., Zhang, W., Barceló, D., Zhou, Y., Bai, Z., Li, B., Zhang, B., Wei, K., Cao, H., Tan, Z., Zhao, L.-B., He, X., Zheng, J., Bolan, N., Liu, X., Huang, C., Dietmann, S., Luo, M., Sun, N., Gong, J., Gong, Y., Brahushi, F., Zhang, T., Xiao, C., Li, X., Chen, W., Jiao, N., Lehmann, J., Zhu, Y. G., Jin, H., Schäffer, A., Tiedje, J. M., & Chen, J. M. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2(4), 100180. http://dx.doi.org/10.1016/j.xinn.2021.100180. PMid:34877561.

2 Chatzimpiros, P., & Harchaoui, S. (2023). Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management. Nature Food, 4(5), 372-383. http://dx.doi.org/10.1038/s43016-023-00741-w. PMid:37117605.

3 Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262-268. http://dx.doi.org/10.1038/s41893-020-0507-8.

4 Qin, M., Chen, C., Song, B., Shen, M., Cao, W., Yang, H., Zeng, G., & Gong, J. (2021). A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? Journal of Cleaner Production, 312, 127816. http://dx.doi.org/10.1016/j.jclepro.2021.127816.

5 Adhikari, R., Bristow, K. L., Casey, P. S., Freischmidt, G., Hornbuckle, J. W., & Adhikari, B. (2016). Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agricultural Water Management, 169, 1-13. http://dx.doi.org/10.1016/j.agwat.2016.02.006.

6 Barrett, C. E., Zotarelli, L., Paranhos, L. G., Dittmar, P., Fraisse, C. W., & VanSickle, J. (2018). Optimization of irrigation and N-fertilizer strategies for cabbage plasticulture system. Scientia Horticulturae, 234, 323-334. http://dx.doi.org/10.1016/j.scienta.2018.02.063.

7 Manful, C. F., Hameed, A., & Thomas, R. H. (2023). Berries. In I. Zabetakis, A. Tsoupras, R. Lordan, & D. Ramji (Eds.), Functional foods and their implications for health promotion (pp. 161-217). Waltham: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-823811-0.00004-3.

8 Khalid, N., Aqeel, M., Noman, A., & Rizvi, Z. F. (2023). Impact of plastic mulching as a major source of microplastics in agroecosystems. Journal of Hazardous Materials, 445, 130455. http://dx.doi.org/10.1016/j.jhazmat.2022.130455. PMid:36463747.

9 Wang, C., Wang, J., Zhang, Y., Qin, S., Zhang, Y., & Liu, C. (2022). Effects of different mulching materials on the grain yield and water use efficiency of maize in the north china plain. Agriculture, 12(8), 1112. http://dx.doi.org/10.3390/agriculture12081112.

10 Gupta, V., Biswas, D., & Roy, S. (2022). A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials, 15(17), 5899. http://dx.doi.org/10.3390/ma15175899. PMid:36079280.

11 Ferreira-Filipe, D. A., Paço, A., Natal-da-Luz, T., Sousa, J. P., Saraiva, J. A., Duarte, A. C., Rocha-Santos, T., & Silva, A. L. P. (2022). Are mulch biofilms used in agriculture na environmentally friendly solution? An insight into their biodegradability and ecotoxicity using key organisms in soil ecosystems. The Science of the Total Environment, 828, 154269. http://dx.doi.org/10.1016/j.scitotenv.2022.154269. PMid:35276171.

12 Maraveas, C. (2020). Production of sustainable and biodegradable polymers from agricultural waste. Polymers, 12(5), 1127. http://dx.doi.org/10.3390/polym12051127. PMid:32423073.

13 Visco, A., Scolaro, C., Facchin, M., Brahimi, S., Belhamdi, H., Gatto, V., & Beghetto, V. (2022). Agri-food wastes for bioplastics: european prospective on possible applications in their second life for a circular economy. Polymers, 14(13), 2752. http://dx.doi.org/10.3390/polym14132752. PMid:35808796.

14 Mo, A., Zhang, Y., Gao, W., Jiang, J., & He, D. (2023). Environmental fate and impacts of biodegradable plastics in agricultural soil ecosystems. Applied Soil Ecology, 181, 104667. http://dx.doi.org/10.1016/j.apsoil.2022.104667.

15 Candlen, K., Haque, M. A., Farfaras, N., Martey, S., Perez, P., Ratto, J. A., Pulis, R., Hagan, R., & Chen, W.-T. (2022). Biodegradable mulch films produced from soy-filled polymer resins. Materials Today. Communications, 31, 103331. http://dx.doi.org/10.1016/j.mtcomm.2022.103331.

16 Xu, C., Zhao, J., Yang, W., He, L., Wei, W., Tan, X., Wang, J., & Lin, A. (2020). Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil. Environmental Pollution, 261, 114133. http://dx.doi.org/10.1016/j.envpol.2020.114133. PMid:32078879.

17 Makavana, J. M., Sarsavadia, P. N., Chauhan, P. M., Dulawat, M. S., Dobariya, U. D., & Yadav, R. (2021). A review pyrolysis: different agricultural residues and their biochar characteristics. International Journal of Environment and Climate Change, 11(7), 80-88. http://dx.doi.org/10.9734/ijecc/2021/v11i730442.

18 Varma, A. K., Singh, S., Rathore, A. K., Thakur, L. S., Shankar, R., & Mondal, P. (2022). Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Conversion and Biorefinery, 12(11), 4877-4888. http://dx.doi.org/10.1007/s13399-020-00972-y.

19 Suriapparao, D. V., & Vinu, R. (2018). Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and Biomass Valorization, 9(3), 465-477. http://dx.doi.org/10.1007/s12649-016-9815-7.

20 Toro-Trochez, J. L., Carrillo-Pedraza, E. S., Bustos-Martínez, D., García-Mateos, F. J., Ruiz-Rosas, R. R., Rodríguez-Mirasol, J., & Cordero, T. (2019). Thermogravimetric characterization and pyrolysis of soybean hulls. Bioresource Technology Reports, 6, 183-189. http://dx.doi.org/10.1016/j.biteb.2019.02.009.

21 Faradilla, R. H. F., Lucia, L., & Hakovirta, M. (2021). Hydrothermal carbonization of soybean hulls for the generation of hydrochar: A promising valorization pathway for low value biomass. Environmental Nanotechnology, Monitoring & Management, 16, 100571. http://dx.doi.org/10.1016/j.enmm.2021.100571.

22 Barros, P. J. R., Ascheri, D. P. R., Santos, M. L. S., Morais, C. C., Ascheri, J. L. R., Signini, R., Santos, D. M., Campos, A. J., & Devilla, I. A. (2020). Soybean hulls: optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis. International Journal of Biological Macromolecules, 144, 208-218. http://dx.doi.org/10.1016/j.ijbiomac.2019.12.074. PMid:31843616.

23 Ikladious, N. E., Shukry, N., El-Kalyoubi, S. F., Asaad, J. N., Mansour, S. H., Tawfik, S. Y., & Abou-Zeid, R. E. (2017). Eco-friendly composites based on peanut shell powder/unsaturated polyester resin. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 955-964. http://dx.doi.org/10.1177/1464420717722377.

24 Camani, P. H., Souza, A. G., Barbosa, R. F. S., Zanini, N. C., Mulinari, D. R., & Rosa, D. S. (2021). Comprehensive insight into surfactant modified-PBAT physicochemical and biodegradability properties. Chemosphere, 269, 128708. http://dx.doi.org/10.1016/j.chemosphere.2020.128708. PMid:33168282.

25 Obasi, H. C. (2015). Peanut husk filled polyethylene composites: effects of filler content and compatibilizer on properties. Journal of Polymers, 2015, 189289. http://dx.doi.org/10.1155/2015/189289.

26 Silva, R., Haraguchi, S. K., Muniz, E. C., & Rubira, A. F. (2009). Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quimica Nova, 32(3), 661-671. http://dx.doi.org/10.1590/S0100-40422009000300010.

27 Stambuk, B. U., Eleutherio, E. C. A., Florez-Pardo, L. M., Souto-Maior, A. M., & Bon, E. P. S. (2008). Brazilian potential for biomass ethanol: challenge of using hexose and pentose cofermenting yeast strains. Journal of Scientific and Industrial Research, 67(11), 918-926. Retrieved in 2023, Jul 14, from http://nopr.niscpr.res.in/handle/123456789/2420

28 Castro-Garzón, H., Contreras, E. J., & Rodríguez, J. P. (2020). Análisis ambiental: impactos generados por los residuos agrícolas en el municipio de El Dorado (Meta, Colombia). Revista ESPACIOS, 41(38), 42-50. http://dx.doi.org/10.48082/espacios-a20v41n38p05.

29 Wu, C.-S. (2012). Utilization of peanut husks as a filler in aliphatic–aromatic polyesters: preparation, characterization, and biodegradability. Polymer Degradation & Stability, 97(11), 2388-2395. http://dx.doi.org/10.1016/j.polymdegradstab.2012.07.027.

30 Silva, T. B. V., Moreira, T. F. M., Oliveira, A., Bilck, A. P., Gonçalves, O. H., Ferreira, I. C. F. R., Barros, L., Barreiro, M.-F., Yamashita, F., Shirai, M. A., & Leimann, F. V. (2019). Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food & Function, 10(12), 7697-7706. http://dx.doi.org/10.1039/C9FO01315F. PMid:31720644.

31 Zhang, C., Chen, F., Meng, W., Li, C., Cui, R., Xia, Z., & Liu, C. (2021). Polyurethane prepolymer-modified high-content starch-PBAT films. Carbohydrate Polymers, 253, 117168. http://dx.doi.org/10.1016/j.carbpol.2020.117168. PMid:33278963.

32 Rojo, E., Peresin, M. S., Sampson, W. W., Hoeger, I. C., Vartiainen, J., Laine, J., & Rojas, O. J. (2015). Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chemistry, 17(3), 1853-1866. http://dx.doi.org/10.1039/C4GC02398F.

33 Bauli, C. R., Rocha, D. B., & Rosa, D. S. (2019). Composite films of ecofriendly lignocellulosic nanostructures in biodegradable polymeric matrix. SN Applied Sciences, 1(7), 774. http://dx.doi.org/10.1007/s42452-019-0765-0.

34 Liu, Q., Wang, Y., Liu, J., Liu, X., Dong, Y., Huang, X., Zhen, Z., Lv, J., & He, W. (2022). Degradability and properties of PBAT-based biodegradable mulch films in field and their effects on cotton planting. Polymers, 14(15), 3157. http://dx.doi.org/10.3390/polym14153157. PMid:35956671.

35 Oliveira, T. A., Mota, I. O., Mousinho, F. E. P., Barbosa, R., Carvalho, L. H., & Alves, T. S. (2019). Biodegradation of mulch films from poly(butylene adipate co-terephthalate), carnauba wax, and sugarcane residue. Journal of Applied Polymer Science, 136(47), 48240. http://dx.doi.org/10.1002/app.48240.

36 Yang, Y., Zhang, C., & Weng, Y. (2021). Effects of CaCO3 surface modification and water spraying on the weathering properties of PBAT/CaCO3 films. Polymer Testing, 102, 107334. http://dx.doi.org/10.1016/j.polymertesting.2021.107334.

37 Ma, F., Wang, B., Leng, X., Wang, Y., Sun, Z., Wang, P., & Wei, Z. (2022). Biodegradable PBAT/PLA/CaCO3 blowing films with enhanced mechanical and barrier properties: investigation of size and content of CaCO3 particles. Macromolecular Materials and Engineering, 307(9), 2200135. http://dx.doi.org/10.1002/mame.202200135.

38 Sciancalepore, C., Togliatti, E., Giubilini, A., Pugliese, D., Moroni, F., Messori, M., & Milanese, D. (2022). Preparation and characterization of innovative poly(butylene adipate terephthalate)-based biocomposites for agri-food packaging application. Journal of Applied Polymer Science, 139(24), 52370. http://dx.doi.org/10.1002/app.52370.

39 Tsou, C.-H., Chen, Z.-J., Yuan, S., Ma, Z.-L., Wu, C.-S., Yang, T., Jia, C.-F., & De Guzman, M. R. (2022). The preparation and performance of poly(butylene adipate) terephthalate/corn stalk composites. Current Research in Green and Sustainable Chemistry, 5, 100329. http://dx.doi.org/10.1016/j.crgsc.2022.100329.

40 Jian, J., Xiangbin, Z., & Xianbo, H. (2020). An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research, 3(1), 19-26. http://dx.doi.org/10.1016/j.aiepr.2020.01.001.

41 Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of torrefied coffee grounds as reinforcing agent to produce highquality biodegradable PBAT composites for food packaging applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. http://dx.doi.org/10.1021/acssuschemeng.6b02633.

42 Al-Oqla, F. M., Hayajneh, M. T., & Aldhirat, A. (2021). Tribological and mechanical fracture performance of Mediterranean lignocellulosic fiber reinforced polypropylene composites. Polymer Composites, 42(10), 5501-5511. http://dx.doi.org/10.1002/pc.26241.

43 Silva, J. S. P., Silva, J. M. F., Soares, B. G., & Livi, S. (2017). Fully biodegradable composites based on poly(butylene adipate-co-terephthalate)/peach palm trees fiber. Composites. Part B, Engineering, 129, 117-123. http://dx.doi.org/10.1016/j.compositesb.2017.07.088.

44 Brunengo, E., Conzatti, L., Utzeri, R., Vicini, S., Scatto, M., Falzacappa, E. V., Castellano, M., & Stagnaro, P. (2019). Chemical modification of hemp fibres by plasma treatment for cocomposites based on biodegradable polyester. Journal of Materials Science, 54(23), 14367-14377. http://dx.doi.org/10.1007/s10853-019-03932-8.

45 Lule, Z. C., & Kim, J. (2021). Properties of economical and eco-friendly polybutylene adipate terephthalate composites loaded with surface treated coffee husk. Composites. Part A, Applied Science and Manufacturing, 140, 106154. http://dx.doi.org/10.1016/j.compositesa.2020.106154.

46 Pei, P., Zou, R., Zhang, C., Yu, M., Chang, S., Tan, J., Li, J., Li, X., & Li, S. (2023). Optimization of alkali-treated banana pseudo-stem fiber/PBAT/PLA bio-composite for packaging application using response surface methodology. BioResources, 18(1), 39-59. http://dx.doi.org/10.15376/biores.18.1.39-59.
 

660c44d4a9539579685551e3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections