Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Low-cost and novel Arduino®-Load cell-based prototype to determine transition temperatures

Luis Carlos Rodríguez-Pacheco; Francisco Paraguay-Delgado; Rubén Castañeda-Balderas; María Luisa Camacho-Ríos; Guillermo Manuel Herrera-Pérez; Iván Alziri Estrada-Moreno; Daniel Lardizábal-Gutiérrez

Downloads: 1
Views: 113


The polymer transition temperature is a crucial parameter in the industry for knowing raw materials before starting the manufacturing process. The current work reports a novel low-cost prototype instrument to measure the transition temperature with reliable accuracy. The equipment was built using commercial load cells composed of strain gauges in combination with an Arduino® microcontroller. The prototype measurement quality was validated by measuring the transition temperatures of most commercial polymers. The obtained values were compared with values obtained by conventional thermal analysis known as differential scanning calorimetric and thermo-mechanical analysis (DSC and TMA), which results in identical values.




Arduino®, load cell, polymer transition, DSC, TMA


1 Rieger, J. (2001). The Glass transition temperature Tg of polymers - Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polymer Testing, 20(2), 199-204. http://dx.doi.org/10.1016/S0142-9418(00)00023-4.

2 Srivastava, A., Chandel, N., & Mehta, N. (2019). Novel explanation for thermal analysis of glass transition. Materials Science and Engineering B, 247, 114378. http://dx.doi.org/10.1016/j.mseb.2019.114378.

3 Gracia-Fernández, C. A., Gómez-Barreiro, S., López-Beceiro, J., Saavedra, J. T., Naya, S., & Artiaga, R. (2010). Comparative study of the dynamic glass transition temperature by DMA and TMDSC. Polymer Testing, 29(8), 1002-1006. http://dx.doi.org/10.1016/j.polymertesting.2010.09.005.

4 Michel, M., & Ferrier, E. (2020). Effect of curing temperature conditions on glass transition temperature values of epoxy polymer used for wet lay-up applications. Construction & Building Materials, 231, 117206. http://dx.doi.org/10.1016/j.conbuildmat.2019.117206.

5 Rosato, D. V., Rosato, D. V., & Rosato, M. G. (Eds.) (2000). Injection molding handbook. USA: Springer. http://dx.doi.org/10.1007/978-1-4615-4597-2.

6 Friedrich, K., Zhang, Z., & Schlarb, A. K. (2005). Effects of various fillers on the sliding wear of polymer composites. Composites Science and Technology, 65(15-16), 2329-2343. http://dx.doi.org/10.1016/j.compscitech.2005.05.028.

7 Hempel, M., Nezich, D., Kong, J., & Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 12(11), 5714-5718. http://dx.doi.org/10.1021/nl302959a. PMid:23045955.

8 Lienhard, J., & Huberth, F. (2019). Strain rate dependent thermo-mechanical aspects of glass fiber reinforced thermoplastic based on experimental data. International Journal of Impact Engineering, 131, 57-65. http://dx.doi.org/10.1016/j.ijimpeng.2019.04.023.

9 El-Abd, M. (2017). A review of embedded systems education in the arduino age: lessons learned and future directions. International Journal of Engineering Pedagogy, 7(2), 79-93. http://dx.doi.org/10.3991/ijep.v7i2.6845.

10 Huang, C.-Y., & Ying, K.-C. (2017). Applying strain gauges to measuring thermal warpage of printed circuit boards. Measurement, 110, 239-248. http://dx.doi.org/10.1016/j.measurement.2017.06.029.

11 Rieger, J. (1996). The glass transition temperature of polystyrene. Journal of Thermal Analysis, 46(3), 965-972. http://dx.doi.org/10.1007/BF01983614.

12 American Society for Testing and Materials – ASTM (2011). ASTM E1545-11: standard test method for assignment of the glass transition temperature by thermomechanical analysis. West Conshohocken: ASTM.

660c4787a953957a871f5d44 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections