Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Development and characterization of chitosan-collagen films loaded with honey

David Servín de la Mora-López; Tomás Jesús Madera-Santana; Jaime López-Cervantes; Dalia Isabel Sánchez-Machado; Jesús Fernando Ayala-Zavala; Herlinda Soto-Valdez

Downloads: 0
Views: 169


Biomaterials developed with biopolymers contribute to the healing process of healthy or diabetic patients. The objective of the present study was to evaluate the effect of honey incorporation (0.3, 0.6, and 1.2 g/100 mL) in chitosan/collagen/glycerol composite films. The Ch/Coll/1.2H films revealed the greatest percentage of elongation (27.10%) and Young´s modulus (65.58 MPa). The barrier properties (WVTR and WVP) exhibited a significant increase when the honey was incorporated into the films. The absorption capacity, solubility, and enzymatic biodegradability were lower in films containing honey. The chemical interactions between the functional groups of the films were verified by FTIR. The morphology studied by SEM confirmed the mixture’s homogeneity. Finally, all formulations exhibited antibacterial properties against Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, and Salmonella Typhimurium. The aforementioned properties of formulated dressings are suitable for their potential application in chronic wounds.




chitosan, collagen, Apis mellifera, antibacterial films, bioactive films


1 Torres, F. G., Commeaux, S., & Troncoso, O. P. (2013). Starch‐based biomaterials for wound‐dressing applications. Starch, 65(7-8), 543-551. http://dx.doi.org/10.1002/star.201200259.

2 Yaşayan, G., Karaca, G., Akgüner, Z. P., & Bal-Öztürk, A. (2021). Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(9), 623-635. http://dx.doi.org/10.1080/00914037.2020.1740993.

3 Sun, B. K., Siprashvili, Z., & Khavari, P. A. (2014). Advances in skin grafting and treatment of cutaneous wounds. Science, 346(6212), 941-945. http://dx.doi.org/10.1126/science.1253836. PMid:25414301.

4 Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., & Car, J. (2016). Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Systematic Reviews, 5(1), 152. http://dx.doi.org/10.1186/s13643-016-0329-y. PMid:27609108.

5 Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: a review. Progress in Biomaterials, 7(1), 1-21. http://dx.doi.org/10.1007/s40204-018-0083-4. PMid:29446015.

6 Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q., & Li, K. (2018). Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. International Journal of Biological Macromolecules, 107, 93-104. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.142.

7 Raisi, A., Asefnejad, A., Shahali, M., Doozandeh, Z., Moghadas, B. K., Saber-Samandari, S., & Khandan, A. (2020). A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. Journal of Nanoanalysis, 7(4), 262-274. http://dx.doi.org/10.22034/JNA.2022.680836.

8 Wu, J., Su, C., Jiang, L., Ye, S., Liu, X., & Shao, W. (2018). Green and facile preparation of chitosan sponges as potential wound dressings. ACS Sustainable Chemistry & Engineering, 6(7), 9145-9152. http://dx.doi.org/10.1021/acssuschemeng.8b01468.

9 Martínez‐Ibarra, D. M., Sánchez‐Machado, D. I., López‐Cervantes, J., Campas‐Baypoli, O. N., Sanches‐Silva, A., & Madera‐Santana, T. J. (2018). Hydrogel wound dressings based on chitosan and xyloglucan: development and characterization. Journal of Applied Polymer Science, 136(12), 47342. http://dx.doi.org/10.1002/app.47342.

10 Valencia-Gómez, L. E., Martel-Estrada, S. A., Vargas-Requena, C. L., Rodriguez-González, C. A., & Olivas-Armendariz, I. (2016). Apósitos de polímeros naturales para regeneración de piel. Revista Mexicana de Ingeniería Biomédica, 37(3), 235-249. http://dx.doi.org/10.17488/rmib.37.3.4.

11 Majtan, J. (2014). Honey: an immunomodulator in wound healing. Wound Repair and Regeneration, 22(2), 187-192. http://dx.doi.org/10.1111/wrr.12117. PMid:24612472.

12 El-Kased, R. F., Amer, R. I., Attia, D., & Elmazar, M. M. (2017). Honey-based hydrogel: in vitro and comparative In vivo evaluation for burn wound healing. Scientific Reports, 7(1), 9692. http://dx.doi.org/10.1038/s41598-017-08771-8. PMid:28851905.

13 Shamloo, A., Aghababaie, Z., Afjoul, H., Jami, M., Bidgoli, M. R., Vossoughi, M., Ramazani, A., & Kamyabhesari, K. (2021). Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. International Journal of Pharmaceutics, 592, 120068. http://dx.doi.org/10.1016/j.ijpharm.2020.120068. PMid:33188894.

14 Sarhan, W. A., & Azzazy, M. H. M. (2015). High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydrate Polymers, 122, 135-143. http://dx.doi.org/10.1016/j.carbpol.2014.12.051. PMid:25817652.

15 Rodríguez-Núñez, J. R., Madera-Santana, T. J., Sánchez-Machado, D. I., López-Cervantes, J., & Soto-Valdez, H. (2014). Chitosan/hydrophilic plasticizer-based films: Preparation, physicochemical and antimicrobial properties. Journal of Polymers and the Environment, 22(1), 41-51. http://dx.doi.org/10.1007/s10924-013-0621-z.

16 Escárcega-Galaz, A. A., Sánchez-Machado, D. I., López-Cervantes, J., Sanches-Silva, A., Madera-Santana, T. J., & Paseiro-Losada, P. (2018). Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. International Journal of Biological Macromolecules, 116, 472-481. http://dx.doi.org/10.1016/j.ijbiomac.2018.04.149. PMid:29727650.

17 American Society for Testing and Materials. (2002). ASTM D882-02: standard test method for tensile properties of thin plastic sheeting. West Conshohocken, PA: ASTM.

18 Madera-Santana, T. J., Freile-Pelegrín, Y., & Azamar-Barrios, J. A. (2014). Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films. International Journal of Biological Macromolecules, 69, 176-184. http://dx.doi.org/10.1016/j.ijbiomac.2014.05.044. PMid:24875313.

19 American Society for Testing and Materials. (2010). ASTM E96/E96M-10: standard test methods for water wapor transmission of materials. Philadelphia, PA: ASTM.

20 González-Pérez, C. J., Tanori-Cordova, J., Aispuro-Hernández, E., Vargas-Arispuro, I., & Martínez-Téllez, M. A. (2019). Morphometric parameters of foodborne related-pathogens estimated by transmission electron microscopy and their relation to optical density and colony forming units. Journal of Microbiological Methods, 165, 105691. http://dx.doi.org/10.1016/j.mimet.2019.105691. PMid:31437554.

21 Rivero, S., Garcia, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531-539. http://dx.doi.org/10.1016/j.jfoodeng.2008.07.021.

22 Rocha-Lemus, L. M., Azamar-Barrios, J. A., Ortíz-Vazquez, E., Quintana-Owen, P., Freile-Pelegrín, Y., Gamboa-Perera, F., & Madera-Santana, T. J. (2021). Development and physical characterization of novel bio-nanocomposite films based on reduced graphene oxide, agar and melipona honey. Carbohydrate Polymer Technologies and Applications, 2, 100133. http://dx.doi.org/10.1016/j.carpta.2021.100133.

23 Ziani, K., Oses, J., Coma, V., & Maté, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. Food Science and Technology (Campinas), 41(10), 2159-2165. http://dx.doi.org/10.1016/j.lwt.2007.11.023.

24 Amiri, N., Moradi, A., Tabasi, S. A. S., & Movaffagh, J. (2018). Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology. Materials Research Express, 5(4), 045404. http://dx.doi.org/10.1088/2053-1591/aaba1d.

25 Shah, R., Stodulka, P., Skopalova, K., & Saha, P. (2019). Dual crosslinked collagen/chitosan film for potential biomedical applications. Polymers, 11(12), 2094. http://dx.doi.org/10.3390/polym11122094. PMid:31847318.

26 Samadieh, S., & Sadri, M. (2021). Preparation and Biomedical properties of transparent chitosan/gelatin/honey/aloe vera nanocomposite. Nanomedicine Research Journal, 5(1), 1-12. http://dx.doi.org/10.22034/nmrj.2020.01.001.

27 Campa-Siqueiros, P., Madera-Santana, T. J., Ayala-Zavala, J. F., López-Cervantes, J., Castillo-Ortega, M. M., & Herrera-Franco, P. J. (2020). Nanofibers of gelatin and polyvinyl-alcohol-chitosan for wound dressing application: fabrication and characterization. Polímeros: Ciência e Tecnologia, 30(1), e2020006. http://dx.doi.org/10.1590/0104-1428.07919.

28 Costa, L. C. V., Kaspchak, E., Queiroz, M. B., Almeida, M. M., Quast, E., & Quast, L. B. (2015). Influence of temperature and homogenization on honey crystallization. Brazilian Journal of Food Technology, 18(2), 155-161. http://dx.doi.org/10.1590/1981-6723.7314.

29 Raisi, A., Asefnejad, A., Shahali, M., Kazerouni, Z. A. S., Kolooshani, A., Saber-Samandari, S. S., Moghadas, B. K., & Khandan, A. (2020). Preparation, characterization, and antibacterial studies of N, O-carboxymethyl chitosan as a wound dressing for bedsore application. Archives of Trauma Research, 9(4), 181-188. http://dx.doi.org/10.4103/atr.atr_10_20.

30 Radoor, S., Karayil, J., Jayakumar, A., Siengchin, S., & Parameswaranpillai, J. (2021). A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property. Journal of Polymer Research, 28(3), 82. http://dx.doi.org/10.1007/s10965-021-02415-2.

657b0957a953955d82796ef4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections