Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230029
Polímeros: Ciência e Tecnologia
Original Article

Development and characterization of sodium polyacrylate/bentonite hydrogel with epoxy resin coating

Marcia Murakoshi Takematsu; Amanda Faria Baruel; Silvana Navarro Cassu; Milton Faria Diniz; David Alexandro Graves; Rita de Cássia Lazzarini Dutra

Downloads: 1
Views: 389

Abstract

Composites are relevant to high-performance materials in the aerospace sector and have attracted the attention of the scientific and technological communities. Bentonites present very fine granulometry which enables their use in composites. This study showed the development of water absorbent composite based on sodium polyacrylate, bentonite coated by epoxy resin. Since there are gaps in the quantification of composite materials by near-infrared spectroscopy, especially by reflectance analysis (NIRA), this paper shows a quantification methodology (A7200/A5202) of sodium polyacrylate and bentonite. The methodology error found was 1.45% (95% of coefficient of determination). The effectiveness of the developed infrared methodology was verified showing that values are close to the nominal, especially for lower bentonite content. Besides, scanning electron microscopy (SEM) and universal attenuated total reflection (UATR) analysis evidenced the coating with the epoxy resin. Such development ensures rapid and precise methodologies that can be applied to the quality control of composite materials.

 

 

Keywords

bentonite, near-infrared spectroscopy, sodium polyacrylate

References

1 Wang, W., Narain, R., & Zeng, H. (2020). Hydrogels. In R. Narain (Ed.), Polymer Science and Nanotechnology (pp. 203-244). UK: Elsevier.. http://dx.doi.org/10.1016/B978-0-12-816806-6.00010-8.

2 Agrawal, A., Rahbar, N., & Calvert, P. D. (2013). Strong fiber-reinforced hydrogel. Acta Biomaterialia, 9(2), 5313-5318. http://dx.doi.org/10.1016/j.actbio.2012.10.011. PMid:23107796.

3 Magalhães, A. S. G., Almeida Neto, M. P., Bezerra, M. N., & Feitosa, J. P. A. (2013). Superabsorbent hydrogel composite with minerals aimed at water sustainability. Journal of the Brazilian Chemical Society, 24(2), 304-313. http://dx.doi.org/10.5935/0103-5053.20130039.

4 Wang, C., Bai, X., Guo, Z., Dong, C., & Yuan, C. (2021). A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene. Composites. Part A, Applied Science and Manufacturing, 141, 106207. http://dx.doi.org/10.1016/j.compositesa.2020.106207.

5 Chen, G. Q., Li, N. N., Fu, X. S., & Zhou, W. L. (2012). Preparation and characterization of a sodium polyacrylate/sodium silicate binder used in oxidation resistant coating for titanium alloy at high temperature. Powder Technology, 230, 134-138. http://dx.doi.org/10.1016/j.powtec.2012.07.020.

6 Chen, Y.-G., Liao, R.-P., Yu, C., & Yu, X. (2020). Sorption of Pb(II) on sodium polyacrylate modified bentonite. Advanced Powder Technology, 31(8), 3274-3286. http://dx.doi.org/10.1016/j.apt.2020.06.011.

7 Kleijn, P., & Reezigt, H. (2005). FR Patent No. EP 1 522 545 A1. France. Retrieved in 2023, April 15, from https://worldwide.espacenet.com/patent/search/family/034309618/publication/EP1522545A1?q=pn%3DEP1522545A1

8 Zhong, K., Lin, Z.-T., Zheng, X.-L., Jiang, G.-B., Fang, Y.-S., Mao, X.-Y., & Liao, Z.-W. (2013). Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers, 92(2), 1367-1376. http://dx.doi.org/10.1016/j.carbpol.2012.10.030. PMid:23399166.

9 Marconato, J. C., & Franchetti, S. M. (2002). Polímeros superabsorventes e as fraldas descartáveis. Química Nova na Escola, 15, 42-44. Retrieved in 2023, April 15, from http://qnesc.sbq.org.br/online/qnesc15/v15a09.pdf

10 Santos, R. V. A. (2015). Polímeros superabsorventes: processos de produção, aplicações e mercado (Master’s dissertation). Universidade Federal da Bahia, Salvador.

11 Khanlari, S., & Dubé, M. A. (2015). Effect of pH on poly(acrylic acid) solution polymerization. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52(8), 587-592. http://dx.doi.org/10.1080/10601325.2015.1050628.

12 Moini, N., & Kabiri, K. (2015). Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iranian Polymer Journal, 24(11), 977-987. http://dx.doi.org/10.1007/s13726-015-0386-4.

13 Huang, Y., King, D. R., Sun, T. L., Nonoyama, T., Kurokawa, T., Nakajima, T., & Gong, J. P. (2017). Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Advanced Functional Materials, 27(9), 1605350. http://dx.doi.org/10.1002/adfm.201605350.

14 Wen, J., Lei, J., Chen, J., Gou, J., Li, Y., & Li, L. (2020). An intelligent coating based on pH-sensitive hybrid hydrogel for corrosion protection of mild steel. Chemical Engineering Journal, 392, 123742. http://dx.doi.org/10.1016/j.cej.2019.123742.

15 Cukrowicz, S., Sitarz, M., Kornaus, K., Kaczmarska, K., Bobrowski, A., Gubernat, A., & Grabowska, B. (2021). Organobentonites modified with poly(acrylic acid) and its sodium salt for foundry applications. Materials (Basel), 14(8), 1947. http://dx.doi.org/10.3390/ma14081947. PMid:33924570.

16 Smith A. L. (1979). Applied infrared spectroscopy: fundamentals techniques and analytical problem-solving. USA: Wiley-Interscience Publication.

17 Hórak, M., & Vítek, A. (1978). Interpretation and processing of vibrational spectra. USA: Wiley-Interscience Publication.

18 Dutra, R. C. L., & Soares, B. G. (1998). Determination of the vinyl mercaptoacetate content in poly(ethylene-co-vinyl acetate-co-vinyl mercaptoacetate) (EVASH) by TGA analysis and FTIR spectroscopy. Polymer Bulletin, 41(1), 61-67. http://dx.doi.org/10.1007/s002890050333.

19 Goddu, R. F. (1960). Near-infrared spectrophotometry. In C. N. Reilly (Ed.), Advances in analytical chemistry and instrumentation (pp. 347-425). USA: Interscience.

20 Magalhães, R. F., Barros, A. H., Takematsu, M. M., Passero, A., Diniz, M. F., Sciamareli, J., & Dutra, R. C. L. (2022). Infrared reflectance techniques applied to silica particles diameter determination - theoretical and experimental data. Anais da Academia Brasileira de Ciências, 94(3), e20210545. http://dx.doi.org/10.1590/0001-3765202220210545. PMid:36259823.

21 Barros, A. H., Murakami, L. M. S., Magalhães, R. F., Takematsu, M. M., Diniz, M. F., Sanches, N. B., Dutra, J. C. N., & Dutra, R. C. L. (2023). Infrared quantification of binary rubber blends with overlapping bands. Anais da Academia Brasileira de Ciências, 95(1), e20220289. http://dx.doi.org/10.1590/0001-3765202320220289.

22 Andrade, H. P. C., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Lourenço, V. L., & Dutra, R. C. L. (2008). Cure behavior of epoxy adhesive containig mercaptan group evaluated by infrared spectroscopy (MIR/NIR) and differential scanning calorimetry (DSC). Polímeros: Ciência e Tecnologia, 18(4), 359-365. http://dx.doi.org/10.1590/S0104-14282008000400017.

23 Janzen, D. A., Diniz, M. F., Azevedo, J. B., Pinto, J. R. A., Sanches, N. B., & Dutra, R. C. L. (2021). Qualitative and quantitative evaluation of epoxy systems by fourier transform infrared spectroscopy and the flexibilizing effect of mercaptans. Anais da Academia Brasileira de Ciências, 93(2), e20200799. http://dx.doi.org/10.1590/0001-3765202120200799. PMid:33950143.

24 Tsiklauri, L., & Getia, M. (2023). Formulation and assessment of clay - polymer hydrogel based on Georgian bentonite. Georgian Scientists, 5(1), 72-80. http://dx.doi.org/10.52340/gs.2023.05.01.05.
 

64f72317a95395530e3f1872 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections