Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230026
Polímeros: Ciência e Tecnologia
Original Article

Development of bacterial cellulose incorporated with essential oils for wound treatment

Sandro Rogério Kumineck Junior; Victória Fonseca Silveira; Denise Abatti Kasper Silva; Michele Cristina Formolo Garcia; Giannini Pasiznick Apati; Andréa Lima dos Santos Schneider; Ana Paula Testa Pezzin; Flares Baratto Filho

Downloads: 1
Views: 546

Abstract

Bacterial cellulose (BC) is promising as a wound dressing because it is non- toxic and maintains moisture in the wound. Although BC does not have antimicrobial activity, its structure allows the incorporation of antimicrobial compounds such as essential oils (EOs). This study aims to associate BC with rosemary, clove, eucalyptus, ginger, lavender and lemongrass EOs to obtain wound dressings. The Gas Chromatography-Mass Spectrometry and Fourier Transform Infrared Spectroscopy analyses showed characteristic compounds of EOs in the incorporated membranes. These compounds reduced the thermal stability of most samples due to their different degrees of volatility. The Scanning Electron Microscopy indicated that the EOs filled the membrane pores and coated the cellulose fibers. Samples incorporated with clove, ginger and lemongrass EOs inhibited Escherichia coli, Staphylococcus aureus and Candida albicans due to the presence of eugenol and citral. The results confirmed the incorporation method's effectiveness, maintaining the composition and antimicrobial characteristics of the EOs.

Keywords

Bacterial cellulose, essential oils, incorporation, wound dressings

References

1 Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing - a review. Journal of Pharmaceutical Sciences, 104(11), 3653-3680. http://dx.doi.org/10.1002/jps.24610. PMid:26308473.

2 Gustaite, S., Kazlauske, J., Bobokalonov, J., Perni, S., Dutschk, V., Liesiene, J., & Prokopovich, P. (2015). Characterization of cellulose based sponges for wound dressings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 336-342. http://dx.doi.org/10.1016/j.colsurfa.2014.08.022.

3 Barud, H. S. (2010). Novos materiais multifuncionais baseados em celulose bacteriana (Tese de doutorado). Araraquara: Universidade Estadual Paulista.

4 Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2), 107-124. Retrieved in 2023, May 7, from https://hrcak.srce.hr/file/59853

5 Pourali, P., Razavianzadeh, N., Khojasteh, L., & Yahyaei, B. (2018). Assessment of the cutaneous wound healing efficiency of acidic, neutral and alkaline bacterial cellulose membrane in rat. Journal of Materials Science. Materials in Medicine, 29(7), 90. http://dx.doi.org/10.1007/s10856-018-6099-4. PMid:29938364.

6 Casalini, S., & Baschetti, M. G. (2023). The use of essential oils in chitosan or cellulose‐based materials for the production of active food packaging solutions: a review. Journal of the Science of Food and Agriculture, 103(3), 1021-1041. http://dx.doi.org/10.1002/jsfa.11918. PMid:35396735.

7 El Fawal, G. F., Omer, A. M., & Tamer, T. M. (2019). Evaluation of antimicrobial and antioxidant activities for cellulose acetate films incorporated with Rosemary and Aloe Vera essential oils. Journal of Food Science and Technology, 56(3), 1510-1518. http://dx.doi.org/10.1007/s13197-019-03642-8. PMid:30956331.

8 Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P. P., Athanassiou, A., & Mele, E. (2015). Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 3(8), 1583-1589. http://dx.doi.org/10.1039/C4TB01974A. PMid:32262430.

9 Liakos, I. L., Holban, A. M., Carzino, R., Lauciello, S., & Grumezescu, A. M. (2017). Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials (Basel, Switzerland), 7(4), 84. http://dx.doi.org/10.3390/nano7040084. PMid:28417912.

10 Qin, M., Mou, X.-J., Dong, W.-H., Liu, J.-X., Liu, H., Dai, Z., Huang, X.-W., Wang, N., & Yan, X. (2020). In Situ Electrospinning Wound Healing Films Composed of Zein and Clove Essential Oil. Macromolecular Materials and Engineering, 305(3), 1900790. http://dx.doi.org/10.1002/mame.201900790.

11 Wang, H., Liu, Y., Cai, K., Zhang, B., Tang, S., Zhang, W., & Liu, W. (2021). Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burns & Trauma, 9, tkab041. http://dx.doi.org/10.1093/burnst/tkab041.

12 Hajiali, H., Summa, M., Russo, D., Armirotti, A., Brunetti, V., Bertorelli, R., Athanassiou, A., & Mele, E. (2016). Alginate-lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 4(9), 1686-1695. http://dx.doi.org/10.1039/C5TB02174J. PMid:32263019.

13 Schmidt, E., Bail, S., Friedl, S. M., Jirovetz, L., Buchbauer, G., Wanner, J., Denkova, Z., Slavchev, A., Stoyanova, A., & Geissler, M. (2010). Antimicrobial activities of single aroma compounds. Natural Product Communications, 5(9), 1365-1368. http://dx.doi.org/10.1177/1934578X1000500906.

14 Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. The Biochemical Journal, 58(2), 345-352. http://dx.doi.org/10.1042/bj0580345. PMid:13208601.

15 Neves, E. Z., Garcia, M. C. F., Apati, G. P., Pezzin, A. P. T., & Schneider, A. L. S. (2018). Desenvolvimento de membranas de celulose bacteriana com incorporação de extrato vegetal. In Anais do 23° Congresso Brasileiro de Engenharia e Ciência dos Materiais (CBECiMat) (pp. 7088-7099). Foz do Iguaçu: Metallum Congressos Técnicos e Científico.

16 Albuquerque, R. M. B. (2019). Biodegradável à base de celulose bacteriana (cb) e polihidroxibutirato (phb) para aplicação como embalagem ativa biodegradável à base de celulose bacteriana (cb) e polihidroxibutirato (phb) para aplicação como embalagem ativa (Dissertação de mestrado). Universidade Católica de Pernambuco, Recife.

17 Ngampunwetchakul, L., Toonkaew, S., Supaphol, P., & Suwantong, O. (2019). Semi- solid poly(vinyl alcohol) hydrogels containing ginger essential oil encapsulated in chitosan nanoparticles for use in wound management. Journal of Polymer Research, 26(9), 224. http://dx.doi.org/10.1007/s10965-019-1880-8.

18 Moreira, S., Rebouças, H., Nair, T., De Moraes, B., Olímpia, M., Moreira, V. S., Nair, T., Rebouças, H., Olímpia, M., & De Moraes, B. (2014). Atividade antioxidante de Urucum (Bixa Orellana L.) in natura e encapsulado. Revista Iberoamericana de Tecnología Postcosecha, 15(2), 201-209.

19 Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6(1), A1.1.1-A1.1.1. http://dx.doi.org/10.1002/0471142913.fai0101s06.

20 Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493. PMid:5325707.

21 Boukhatem, M. N., Ferhat, M. A., Kameli, A., Saidi, F., Walid, K., & Mohamed, S. B. (2014). Quality assessment of the essential oil from Eucalyptus globulus Labill of Blida (Algeria) origin. International Letters of Chemistry, Physics and Astronomy, 36, 303-315. http://dx.doi.org/10.18052/www.scipress.com/ILCPA.36.303.

22 Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S., & Mikov, M. (2014). Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complementary and Alternative Medicine, 14(1), 225. http://dx.doi.org/10.1186/1472-6882-14-225. PMid:25002023.

23 Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113-122. http://dx.doi.org/10.1016/j.foodchem.2018.09.085. PMid:30724177.

24 Mutlu-Ingok, A., Catalkaya, G., Capanoglu, E., & Karbancioglu-Guler, F. (2021). Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Frontiers, 2(4), 508-518. http://dx.doi.org/10.1002/fft2.77.

25 Singh, G., Maurya, S., Catalan, C., & Lampasona, M. P. (2005). Studies on essential oils, part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour and Fragrance Journal, 20(1), 1-6. http://dx.doi.org/10.1002/ffj.1373.

26 Popa, C. L., Lupitu, A., Mot, M. D., Copolovici, L., Moisa, C., & Copolovici, D. M. (2021). Chemical and biochemical characterization of essential oils and their corresponding hydrolats from six species of the Lamiaceae family. Plants, 10(11), 2489. http://dx.doi.org/10.3390/plants10112489. PMid:34834852.

27 Viktorová, J., Stupák, M., Řehořová, K., Dobiasová, S., Hoang, L., Hajšlová, J., Van Thanh, T., Van Tri, L., Van Tuan, N., & Ruml, T. (2020). Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral: its dominant and strongly antimicrobial compound. Foods, 9(5), 585. http://dx.doi.org/10.3390/foods9050585. PMid:32380674.

28 Ali, A., Cottrell, J. J., & Dunshea, F. R. (2022). LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites, 12(11), 1016. http://dx.doi.org/10.3390/metabo12111016. PMid:36355099.

29 Pokajewicz, K., Białoń, M., Svydenko, L., Fedin, R., & Hudz, N. (2021). Chemical composition of the essential oil of the new cultivars of lavandula angustifolia mill. Bred in ukraine. Molecules (Basel, Switzerland), 26(18), 5681. http://dx.doi.org/10.3390/molecules26185681. PMid:34577152.

30 Hazarika, U., & Gosztola, B. (2020). Lyophilization and its Effects on the Essential Oil Content and Composition of Herbs and Spices - A Review. Acta Scientiarum Polonorum. Technologia Alimentaria, 19(4), 467-473. http://dx.doi.org/10.17306/J.AFS.2020.0853. PMid:33179486.

31 Lemos, A. R., Rêgo, N. O., Jr., São José, A. R., Pereira, M. L. A., & Silva, M. V. (2011). Atividade antioxidante e correlação com fenólicos totais em genótipos de Urucum (Bixa orellana L). Revista do Instituto Adolfo Lutz, 70(1), 62-68. http://dx.doi.org/10.53393/rial.2011.v70.32592.

32 Ricci, A., Olejar, K. J., Parpinello, G. P., Kilmartin, P. A., & Versari, A. (2015). Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Applied Spectroscopy Reviews, 50(5), 407-442. http://dx.doi.org/10.1080/05704928.2014.1000461.

33 Pecoraro, É., Manzani, D., Messaddeq, Y., & Ribeiro, S. J. L. (2007). Bacterial cellulose from glucanacetobacter xylinus: Preparation, properties and applications. Monomers. Polymers and Composites from Renewable Resources, 2007, 369-383. http://dx.doi.org/10.1016/B978-0-08-045316-3.00017-X.

34 Borges, F. A., Siguematsu, P. R., Herculano, R. D., & Santos, C. (2015). Novel sustained-release of stryphnodendron obovatum leaves extract using natural rubber latex as carrier. Revista de Ciências Farmacêuticas Básica e Aplicada, 36(3), 379-384. Retrieved in 2023, May 7, from https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/25/24

35 Falcão, L., & Araújo, M. E. M. (2013). Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. Journal of Cultural Heritage, 14(6), 499-508. http://dx.doi.org/10.1016/j.culher.2012.11.003.

36 Motelica, L., Ficai, D., Oprea, O.-C., Ficai, A., Ene, V.-L., Vasile, B.-S., Andronescu, E., & Holban, A.-M. (2021). Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials (Basel, Switzerland), 11(9), 2377. http://dx.doi.org/10.3390/nano11092377. PMid:34578695.

37 Truzzi, E., Marchetti, L., Bertelli, D., & Benvenuti, S. (2021). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometric analysis for detection and quantification of adulteration in lavender and citronella essential oils. Phytochemical Analysis, 32(6), 907-920. http://dx.doi.org/10.1002/pca.3034. PMid:33565180.

38 Dzimitrowicz, A., Berent, S., Motyka, A., Jamroz, P., Kurcbach, K., Sledz, W., & Pohl, P. (2019). Comparison of the characteristics of gold nanoparticles synthesized using aqueous plant extracts and natural plant essential oils of Eucalyptus globulus and Rosmarinus officinalis. Arabian Journal of Chemistry, 12(8), 4795-4805. http://dx.doi.org/10.1016/j.arabjc.2016.09.007.

39 Martins, W. S., Araújo, J. S. F., Feitosa, B. F., Oliveira, J. R., Kotzebue, L. R. V., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., Cavalcanti, M. T., & Silva, A. L. (2021). Lemongrass (Cymbopogon citratus DC. Stapf) essential oil microparticles: development, characterization, and antioxidant potential. Food Chemistry, 355, 129644. http://dx.doi.org/10.1016/j.foodchem.2021.129644. PMid:33799254.

40 Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A. P. L., Pauletti, G. F., & Barcellos, T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: in vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997. http://dx.doi.org/10.1016/j.foodchem.2020.126997. PMid:32422511.

41 Kopp, V. V. (2020). Óleo essencial de cravo encapsulado como microbicida natural (Dissertação de mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

42 Reyes Méndez, L. M. (2017). Produção, caracterização e estudo da estabilidade de filmes à base de gelatina e extrato de própolis vermelha enriquecidos com óleos essenciais de manjericão (Ocicum basilicum), cravo (Syzygium aromaticum) ou hortelã (Mentha piperita) (Tese de doutorado). Universidade de São Paulo, Pirassununga.

43 Lima, L. R., Santos, D. B., Santos, M. V., Barud, H. S., Henrique, M. A., Pasquini, D., Pecoraro, E., & Ribeiro, S. J. L. (2015). Nanocristais de celulose a partir de celulose bacteriana. Quimica Nova, 38(9), 1140-1147. http://dx.doi.org/10.5935/0100-4042.20150131.

44 Babaoglu, H. C., Bayrak, A., Ozdemir, N., & Ozgun, N. (2017). Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. Journal of Food Processing and Preservation, 41(5), e13202. http://dx.doi.org/10.1111/jfpp.13202.

45 Chandran, J., Nayana, N., Roshini, N., & Nisha, P. (2017). Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. Journal of Food Science and Technology, 54(1), 144-152. http://dx.doi.org/10.1007/s13197-016-2446-y. PMid:28242912.

46 Hamama, A. A., & Nawar, W. W. (1991). Thermal decomposition of some phenolic antioxidants. Journal of Agricultural and Food Chemistry, 39(6), 1063-1069. http://dx.doi.org/10.1021/jf00006a012.

47 Barud, H. S. (2006). Preparo e caracterização de novos compósitos de celulose bacteriana (Dissertação de mestrado). Universidade Estadual Paulista, Araraquara.

48 Fernandes, M., Gama, M., Dourado, F., & Souto, A. P. (2019). Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology, 12(4), 650-661. http://dx.doi.org/10.1111/1751-7915.13387. PMid:31119894.

49 Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. http://dx.doi.org/10.1016/j.carbpol.2013.08.018. PMid:24053844.

50 Jahed, E., Khaledabad, M. A., Bari, M. R., & Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive & Functional Polymers, 117, 70-80. http://dx.doi.org/10.1016/j.reactfunctpolym.2017.06.008.

51 Jiang, Y., Wu, N., Fu, Y.-J., Wang, W., Luo, M., Zhao, C.-J., Zu, Y.-G., & Liu, X.-L. (2011). Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environmental Toxicology and Pharmacology, 32(1), 63-68. http://dx.doi.org/10.1016/j.etap.2011.03.011. PMid:21787731.

52 Shafaghat, A., Salimi, F., & Amani-Hooshyar, V. (2012). Phytochemical and antimicrobial activities of Lavandula officinalis leaves and stems against some pathogenic microorganisms. Journal of Medicinal Plants Research, 6(3), 455-460. http://dx.doi.org/10.5897/JMPR11.1166.

53 Mekonnen, A., Yitayew, B., Tesema, A., & Taddese, S. (2016). In Vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. International Journal of Microbiology, 2016, 9545693. http://dx.doi.org/10.1155/2016/9545693.

54 Noumi, E., Snoussi, M., Hajlaoui, H., Trabelsi, N., Ksouri, R., Valentin, E., & Bakhrouf, A. (2011). Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (Tea Tree) and Eucalyptus globulus essential oils against oral Candida species. Journal of Medicinal Plants Research, 5(17), 4147-4156. Retrieved in 2023, May 7, from https://academicjournals.org/article/article1380717117_Noumi%20et%20al%202.pdf

55 Rahimifard, N., Sabzevari, O., Shoeibi, S., Pakzad, S. R., Ajdary, S., Hajimehdipoor, H., Bagheri, F., & Safaee, M. (2015). Antifungal activity of the essential oil of Eugenia caryophyllata on Candida albicans, Aspergillus niger and Aspergillus flavus. Biomedical & Pharmacology Journal, 1(1), 43-46.

56 Silvestri, J. D. F., Paroul, N., Czyewski, E., Lerin, L., Rotava, I., Cansian, R. L., Mossi, A., Toniazzo, G., Oliveira, D., & Treichel, H. (2010). Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thunb.). Revista Ceres, 57(5), 589-594. http://dx.doi.org/10.1590/S0034-737X2010000500004.

57 Sharma, P. K., Singh, V., & Ali, M. (2016). Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber officinale roscoe. Pharmacognosy Journal, 8(3), 185-190. http://dx.doi.org/10.5530/pj.2016.3.3.

58 Ahmad, A., & Viljoen, A. (2015). The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. Phytomedicine, 22(6), 657-665. http://dx.doi.org/10.1016/j.phymed.2015.04.002. PMid:26055131.

59 Amani, F., Sami, M., & Rezaei, A. (2021). Characterization and antibacterial activity of encapsulated rosemary essential oil within amylose nanostructures as a natural antimicrobial in food applications. Starch, 73(7-8), 2100021. http://dx.doi.org/10.1002/star.202100021.

60 Lima, L. L., Taketa, T. B., Beppu, M. M., Sousa, I. M. O., Foglio, M. A., & Moraes, Â. M. (2019). Coated electrospun bioactive wound dressings: mechanical properties and ability to control lesion microenvironment. Materials Science and Engineering C, 100, 493-504. http://dx.doi.org/10.1016/j.msec.2019.03.005. PMid:30948086.
 

65ce0472a953953dbd50cd75 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections