Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230025
Polímeros: Ciência e Tecnologia
Original Article

Polysaccharide from Cumaru (Amburana cearensis) exudate and its potential for biotechnological applications

José Regilmar Teixeira da Silva; Iranildo Costa Araújo; Eziel Cardoso da Silva; Moisés das Virgens Santana; Geanderson Emilio de Almeida; Emanuel Airton de Oliveira Farias; Laís Ramos Monteiro de Lima; Regina Célia Monteiro de Paula; Durcilene Alves da Silva; Alyne Rodrigues Araújo; Carla Eiras

Downloads: 3
Views: 511

Abstract

Amburana cearensis tree is used in various applications, from artisanal to pharmaceutical use. However, the gum extracted from its exudate has not yet been investigated. This study aimed to the physicochemical and structural characterization of Amburana cearensis Gum (AcG) by elemental, rheological, and thermal analyses, X-ray diffraction (XRD), high-Performance Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC), Infrared Spectroscopy (FTIR), UV-Vis spectroscopy and nuclear magnetic resonance (NMR). Additionally, a hemolytic assay was performed to evaluate the biocompatibility of AcG using human erythrocytes. The results showed that AcG consists of β-D-Galactopyranose monomers linked by glycosidic bonds (1→3). At the same time, the side chains exhibit β-Galactopyranose (1→6) and α-L-Arabinofuranoside (1→3,6) monomers as non-reducing terminals, whose biocompatibility was excellent in the model used. AcG was described for the first time as a biopolymer that could have broad applications in the pharmaceutical and cosmetic industries, justifying the interest in further studies about AcG applications.

 

 

Keywords

gum of tree exudate, biopolymer, arabinogalactan, hemolytic activity

References

1 Paula, R. C. M., & Rodrigues, J. F. (1995). Composition and rheological properties of cashew tree gum. the exudate polysaccharide from Anacardium occidentale L. Carbohydrate Polymers, 26(3), 177-181. http://dx.doi.org/10.1016/0144-8617(95)00006-S.

2 Costa, S. M. O., Rodrigues, J. F., & Paula, R. C. M. (1996). Monitorização do processo de purificação de gomas naturais: goma do Cajueiro. Polímeros: Ciência e Tecnologia, 6(2), 49-55. Retrieved in 2024, February 15, from https://www.revistapolimeros.org.br/article/5883713d7f8c9d0a0c8b47d4/pdf/polimeros-6-2-4.pdf

3 Lopez-Torrez, L., Nigen, M., Williams, P., Doco, T., & Sanchez, C. (2015). Acacia senegal vs. Acacia seyal gums – part 1: composition and structure of hyperbranched plant exudates. Food Hydrocolloids, 51, 41-53. http://dx.doi.org/10.1016/j.foodhyd.2015.04.019.

4 Mothé, C. G., & Rao, M. A. (2000). Thermal behavior of gum arabic in comparison with cashew gum. Thermochimica Acta, 357-358, 9-13. http://dx.doi.org/10.1016/S0040-6031(00)00358-0.

5 Porto, B. C., & Cristianini, M. (2014). Evaluation of cashew tree gum (Anacardium occidentale L.) emulsifying properties. Lebensmittel-Wissenschaft + Technologie, 59(2), 1325-1331. http://dx.doi.org/10.1016/j.lwt.2014.03.033.

6 Silva, F., Torres, L., Silva, L., Figueiredo, R., Garruti, D., Araújo, T., Duarte, A., Brito, D., & Ricardo, N. (2018). Cashew gum and maltrodextrin particles for green tea (Camellia sinensis var Assamica) extract encapsulation. Food Chemistry, 261, 169-175. http://dx.doi.org/10.1016/j.foodchem.2018.04.028. PMid:29739579.

7 Oliveira, E. F., Paula, H. C. B., & Paula, R. C. M. (2014). Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces. B, Biointerfaces, 113, 146-151. http://dx.doi.org/10.1016/j.colsurfb.2013.08.038. PMid:24077112.

8 Paula, H. C. B., Sombra, F. M., Cavalcante, R. F., Abreu, F. O. M., & Paula, R. C. M. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering C, 31(2), 173-178. http://dx.doi.org/10.1016/j.msec.2010.08.013.

9 Paula, R. C. M., Heatley, F., & Budd, P. M. (1998). Characterization of Anacardium occidentale exudate polysaccharide. Polymer International, 45(1), 27-35. http://dx.doi.org/10.1002/(SICI)1097-0126(199801)45:1<27::AID-PI900>3.0.CO;2-9.

10 Brito, A. C. F., Silva, D. A., Paula, R. C. M., & Feitosa, J. P. A. (2004). Sterculia striata exudate polysaccharide: characterization, rheological properties and comparison with Sterculia urens (karaya) polysaccharide. Polymer International, 53(8), 1025-1032. http://dx.doi.org/10.1002/pi.1468.

11 Empresa Brasileira de Pesquisa Agropecuária – Embrapa. (2003). Cumaru: taxonomia e nomenclatura (Circular Técnica, No. 76). Colombo: Embrapa. Retrieved in 2024, February 15, from https://www.infoteca.cnptia.embrapa.br/bitstream/doc/314139/1/CT0076.pdf

12 Canuto, K. M., & Silveira, E. R. (2006). Constituintes químicos da casca do caule de Amburana cearensis A.C. Smith. Quimica Nova, 29(6), 1241-1243. http://dx.doi.org/10.1590/S0100-40422006000600018.

13 Santiago, W. D., Cardoso, M. G., & Nelson, D. L. (2017). Cachaça stored in casks newly constructed of oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba): alcohol content, phenol composition, colour intensity and dry extract. Journal of the Institute of Brewing, 123(2), 232-241. http://dx.doi.org/10.1002/jib.414.

14 Melo, B. A., Molina-Rugama, A. J., Haddi, K., Leite, D. T., & Oliveira, E. E. (2015). Repellency and bioactivity of Caatinga biome plant powders against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). The Florida Entomologist, 98(2), 417-423. http://dx.doi.org/10.1653/024.098.0204.

15 Bravo, J. A., Sauvain, M., Gimenez, A., Muñoz, V., Callapa, J., Le Men-Olivier, L., Massiot, G., & Lavaud, C. (1999). Bioactive phenolic glycosides from Amburana cearensis.Phytochemistry, 50(1), 71-74. http://dx.doi.org/10.1016/S0031-9422(98)00497-X.

16 Pereira, É. P. L., Souza, C. S., Amparo, J., Ferreira, R. S., Nuñez-Figueredo, Y., Fernandez, L. G., Ribeiro, P. R., Braga-de-Souza, S., Silva, V. D. A., & Costa, S. L. (2017). Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate. Journal of Ethnopharmacology, 209, 157-166. http://dx.doi.org/10.1016/j.jep.2017.07.017. PMid:28712890.

17 Bandeira, P. N., Farias, S. S., Lemos, T. L. G., Braz-Filho, R., Santos, H. S., Albuquerque, M. R. J. R., & Costa, S. M. O. (2011). New isoflavone derivative and other flavonoids from the resin of Amburana cearensis.Journal of the Brazilian Chemical Society, 22(2), 372-375. http://dx.doi.org/10.1590/S0103-50532011000200025.

18 Oliveira, G. P., Silva, T. M. G., Camara, C. A., Santana, A. L. B. D., Moreira, M. S. A., & Silva, T. M. S. (2017). Isolation and structure elucidation of flavonoids from Amburana cearensis resin and identification of human DNA topoisomerase II-α inhibitors. Phytochemistry Letters, 22, 61-70. http://dx.doi.org/10.1016/j.phytol.2017.09.006.

19 Pinto, R. M., Cunha, J. N. B., Silva, J. R. T., Araújo, R., Farias, E. A. O., Barud, H. S., Nunes, L. C. C., & Eiras, C. (2023). Self-supported films of Amburana cearensis bipolymer as an alternative for biodegradable packaging. Waste and Biomass Valorization, 2023, 1-10. http://dx.doi.org/10.1007/s12649-023-02339-6.

20 Leal, L. K. A. M., Nechio, M., Silveira, E. R., Canuto, K. M., Fontenele, J. B., Ribeiro, R. A., & Viana, G. S. B. (2003). Anti-inflammatory and smooth muscle relaxant activities of the hydroalcoholic extract and chemical constituents from Amburana cearensis A. C. Smith. Phytotherapy Research, 17(4), 335-340. http://dx.doi.org/10.1002/ptr.1139. PMid:12722135.

21 Bashir, M., & Haripriya, S. (2016). Assessment of physical and structural characteristics of almond gum. International Journal of Biological Macromolecules, 93(Pt A), 476-482. http://dx.doi.org/10.1016/j.ijbiomac.2016.09.009. PMid:27608543.

22 Quelemes, P. V., Araújo, A. R., Plácido, A., Delerue-Matos, C., Maciel, J. S., Bessa, L. J., Ombredane, A. S., Joanitti, G. A., Soares, M. J. S., Silva, D. A., & Leite, J. R. S. A. (2017). Quaternized cashew gum: an anti-staphylococcal and biocompatible cationic polymer for biotechnological applications. Carbohydrate Polymers, 157, 567-575. http://dx.doi.org/10.1016/j.carbpol.2016.10.026. PMid:27987963.

23 Rodrigues, J. F., Paula, R. C. M., & Costa, S. M. O. (1993). Métodos de isolamento de gomas naturais: comparação através da goma do cajueiro (Anacardium occidentale L.). Polímeros: Ciência e Tecnologia, 3(1), 31-36. Retrieved in 2024, February 15, from https://www.revistapolimeros.org.br/article/588371337f8c9d0a0c8b479c/pdf/polimeros-3-1-31.pdf

24 Simas-Tosin, F. F., Barraza, R. R., Petkowicz, C. L. O., Silveira, J. L. M., Sassaki, G. L., Santos, E. M. R., Gorin, P. A. J., & Iacomini, M. (2010). Rheological and structural characteristics of peach tree gum exudate. Food Hydrocolloids, 24(5), 486-493. http://dx.doi.org/10.1016/j.foodhyd.2009.12.010.

25 Åkerberg, A. K. E., Liljeberg, H. G. M., Granfeldt, Y. E., Drews, A. W., & Björck, I. M. E. (1998). An in vitro method. based on chewing. to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. The Journal of Nutrition, 128(3), 651-660. http://dx.doi.org/10.1093/jn/128.3.651. PMid:9482777.

26 Silva, A. G., Rodrigues, J. F., & Paula, R. C. M. (1998). Composição e propriedades reológicas da goma do angico (Anadenanthera Macrocarpa Benth). Polímeros, 8(2), 34-40. http://dx.doi.org/10.1590/S0104-14281998000200006.

27 Suvakanta, D., Narsimha, M. P., Pulak, D., Joshabir, C., & Biswajit, D. (2014). Optimization and characterization of purified polysaccharide from Musa sapientum L. as a pharmaceutical excipient. Food Chemistry, 149, 76-83. http://dx.doi.org/10.1016/j.foodchem.2013.10.068. PMid:24295679.

28 Brondsted, H., Hovgaard, L., & Simonsen, L. (1995). Dextran hydrogels for colon-specific drug delivery IV: comparative release study of hydrocortisone and prednisolone sodium phosphate. STP Pharma Sciences, 5(1), 65-69.

29 Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2006). Identificação espectrofotométrica de compostos orgânicos. Rio de Janeiro: LTC.

30 Menezes, T. M. F. (2014). Isolamento dos polissacarídeos dos cogumelos Agaricus blazei e Lentinus edodes: caracterização estrutural, estudo reológico e potencial para uso terapêutico (Master’s dissertation). Universidade Federal do Ceará, Fortaleza.

31 Mohaček-Grošev, V., Božac, R., & Puppels, G. J. (2001). Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 57(14), 2815-2829. http://dx.doi.org/10.1016/S1386-1425(01)00584-4. PMid:11789883.

32 Payne, K. J., & Veis, A. (1988). Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749-1760. http://dx.doi.org/10.1002/bip.360271105. PMid:3233328.

33 Liang, F., Hu, C., He, Z., & Pan, Y. (2014). An arabinogalactan from flowers of Chrysanthemum morifolium: structural and bioactivity studies. Carbohydrate Research, 387, 37-41. http://dx.doi.org/10.1016/j.carres.2013.09.002. PMid:24565932.

34 Leivas, C. L., Iacomini, M., & Cordeiro, L. M. C. (2016). Pectic type II arabinogalactans from starfruit (Averrhoa carambola L.). Food Chemistry, 199, 252-257. http://dx.doi.org/10.1016/j.foodchem.2015.12.020. PMid:26775968.

35 Li, X., Fang, Y., Zhang, H., Nishinari, K., Al-Assaf, S., & Phillips, G. O. (2011). Rheological properties of gum arabic solution: from Newtonianism to thixotropy. Food Hydrocolloids, 25(3), 293-298. http://dx.doi.org/10.1016/j.foodhyd.2010.06.006.

36 Marson-Ascêncio, P. G., Ascêncio, S. D., & Baggio, S. F. Z. (2012). Isolamento e análise química parcial de exopolissacarídeos da diatomácea marinha cultivada Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta). Quimica Nova, 35(8), 1542-1548. http://dx.doi.org/10.1590/S0100-40422012000800010.

37 Gorin, P. A. J., & Mazurek, M. (1975). Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Canadian Journal of Chemistry, 53(8), 1212-1223. http://dx.doi.org/10.1139/v75-168.

38 Dong, Q., & Fang, J.-N. (2001). Structural elucidation of a new arabinogalactan from the leaves of Nerium indicum. Carbohydrate Research, 332(1), 109-114. http://dx.doi.org/10.1016/S0008-6215(01)00073-8. PMid:11403084.

39 Aspinall, G. O. (1973). Carbohydrate polymers of plant cell walls. In F. Loewus (Ed.), Biogenesis of plant cell wall polysaccharides (pp. 95-115). New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-455350-7.50011-0.

40 Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2014). Introduction to spectroscopy. Stamford: Cengage Learning.

41 Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x. PMid:8401598.

42 Carbonero, E. R., Gracher, A. H. P., Komura, D. L., Marcon, R., Freitas, C. S., Baggio, C. H., Santos, A. R. S., Torri, G., Gorin, P. A. J., & Iacomini, M. (2008). Lentinus edodes heterogalactan: antinociceptive and anti-inflammatory effects. Food Chemistry, 111(3), 531-537. http://dx.doi.org/10.1016/j.foodchem.2008.04.015.

43 Amaral, A. E., Carbonero, E. R., Simão, R. C. G., Kadowaki, M. K., Sassaki, G. L., Osaku, C. A., Gorin, P. A. J., & Iacomini, M. (2008). An unusual water-soluble β-glucan from the basidiocarp of the fungus Ganoderma resinaceum.Carbohydrate Polymers, 72(3), 473-478. http://dx.doi.org/10.1016/j.carbpol.2007.09.016.

44 Willför, S., Sjöholm, R., Laine, C., & Holmbom, B. (2002). Structural features of water-soluble arabinogalactans from Norway spruce and Scots pine heartwood. Wood Science and Technology, 36(2), 101-110. http://dx.doi.org/10.1007/s00226-001-0137-x.

45 Silva, S. C. C. C., Braz, E. M. A., Carvalho, F. A. A., Brito, C. A. R. S., Brito, L. M., Barreto, H. M., Silva, E. C., Fo., & Silva, D. A. (2020). Antibacterial and cytotoxic properties from esterified Sterculia gum. International Journal of Biological Macromolecules, 164, 606-615. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.031. PMid:32652149.

46 Oliveira, R. W. G., Oliveira, J. M., Paz, F. B., Muniz, E. C., Moura, E. M., Costa, J. C. S., Nascimento, M. O., Carvalho, A. L. M., Pinheiro, I. M., Mendes, A. N., Filgueiras, L. A., Souza, P. R., & Moura, C. V. R. (2023). Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. International Journal of Biological Macromolecules, 235, 123905. http://dx.doi.org/10.1016/j.ijbiomac.2023.123905. PMid:36870650.
 

660c47c1a953957ad15527e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections