Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230023
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and characterization of polyurethane and samarium(III) oxide and holmium(III) oxide composites

Lucas Repecka Alves; Giovanni Miraveti Carriello; Guilherme Manassés Pegoraro; Henrique Solowej Medeiros Lopes; Thaís de Agrella Janolla; Airton Natanael Coelho Dias; Giovanni Pimenta Mambrini; Maira de Lourdes Rezende; Aparecido Junior de Menezes

Downloads: 0
Views: 654

Abstract

Polyurethanes, versatile polymers extensively explored across industries, can be augmented by incorporating complementary materials like lanthanides. This research presents a novel approach, employing a one-shot synthesis to create polyurethane-lanthanide composites using polyol, isocyanate, samarium, and holmium oxides. FTIR and Raman spectroscopy affirmed successful polyurethane matrix formation, while XRD unveiled distinct phases in lanthanide-loaded matrices versus soft, low-crystallinity polyurethane in control foam. Optical microscopy displayed morphology alterations due to samarium and holmium. Thermogravimetric analysis revealed heightened composite thermal stability compared to control foam. Looking ahead, these outcomes prompt further exploration of polyurethane-lanthanide composites, particularly in harnessing property changes for diverse applications.

Keywords

composite, holmium, lanthanides, polyurethane, samarium

References

1 Aquino, F. G., Sheldrake, T., Clevelario, J., Pires, F., & Coutinho, F. M. B. (2010). Estudo do envelhecimento de poliuretanos aplicados na indústria de petróleo. Polímeros: Ciência e Tecnologia, 20(1), 33-38. http://dx.doi.org/10.1590/S0104-14282010005000006.

2 Alves, L. R., Carriello, G. M., Pegoraro, G. M., & Fernandes, J., Fo. (2021). A utilização de óleos vegetais como fonte de polióis para a síntese de poliuretano: uma revisão. Disciplinarum Scientia. Série Naturais e Tecnológicas, 22(1), 99-118. http://dx.doi.org/10.37779/nt.v22i1.3711.

3 Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications: a review. RSC Advances, 6(115), 114453-114482. http://dx.doi.org/10.1039/C6RA14525F.

4 Coutinho, F. M. B., & Delpech, M. C. (1999). Poliuretanos como materiais de revestimento de superfície. Polímeros: Ciência e Tecnologia, 9(1), 41-48. http://dx.doi.org/10.1590/S0104-14281999000100006.

5 Gama, N. V., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane foams: past, present, and future. Materials, 11(10), 1841. http://dx.doi.org/10.3390/ma11101841. PMid:30262722.

6 Macedo, V., Zimmermmann, M. V. G., Koester, L. S., Scienza, L. C., & Zattera, A. J. (2017). Obtenção de espumas flexíveis de poliuretano com celulose de Pinus elliottii. Polímeros: Ciência e Tecnologia, 27(5), 27-34. http://dx.doi.org/10.1590/0104-1428.2212.

7 Ma, G., Guan, T., Hou, C., Wu, J., Wang, G., Ji, X., & Wang, B. (2015). Preparation, properties and application of waterborne hydroxyl-functional polyurethane/acrylic emulsions in two-component coatings. Journal of Coatings Technology and Research, 12(3), 505-512. http://dx.doi.org/10.1007/s11998-014-9647-y.

8 Davis, F. J., & Mitchell, G. R. (2008). Polyurethane based materials with applications in medical devices. In P. Bártolo & B. Bidanda (Eds.), Bio-materials and prototyping applications in medicine (pp. 27-48). Boston: Springer. http://dx.doi.org/10.1007/978-0-387-47683-4_3.

9 Llevot, A., & Meier, M. (2019). Perspective: green polyurethane synthesis for coating applications. Polymer International, 68(5), 826-831. http://dx.doi.org/10.1002/pi.5655.

10 Król, P. (2007). Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 52(6), 915-1015. http://dx.doi.org/10.1016/j.pmatsci.2006.11.001.

11 Kausar, A. (2020). Shape memory polyurethane/graphene nanocomposites: structures, properties, and applications. Journal of Plastic Film & Sheeting, 36(2), 151-166. http://dx.doi.org/10.1177/8756087919865296.

12 Bahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites. Part B, Engineering, 168, 421-431. http://dx.doi.org/10.1016/j.compositesb.2019.03.044.

13 Cong, L., Yang, F., Guo, G., Ren, M., Shi, J., & Tan, L. (2019). The use of polyurethane for asphalt pavement engineering applications: a state-of-the-art review. Construction & Building Materials, 225, 1012-1025. http://dx.doi.org/10.1016/j.conbuildmat.2019.07.213.

14 Singh, H., & Jain, A. K. (2009). Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. Journal of Applied Polymer Science, 111(2), 1115-1143. http://dx.doi.org/10.1002/app.29131.

15 Vahabi, H., Rastin, H., Movahedifar, E., Antoun, K., Brosse, N., & Saeb, M. R. (2020). Flame retardancy of bio-based polyurethanes: opportunities and challenges. Polymers, 12(6), 1234. http://dx.doi.org/10.3390/polym12061234. PMid:32485825.

16 Wang, X., Zhou, S., & Wu, L. (2012). Stability, UV shielding properties, and light conversion behavior of Eu(BMDM)3@polysiloxane nanoparticles in water and polyurethane films. Materials Chemistry and Physics, 137(2), 644-651. http://dx.doi.org/10.1016/j.matchemphys.2012.09.070.

17 Villagra, D., Fuentealba, P., Spodine, E., Vega, A., Santana, R. C., Verdejo, R., Lopez-Manchado, M. A., & Aguilar-Bolados, H. (2021). Effect of terbium(III) species on the structure and physical properties of polyurethane (TPU). Polymer, 233, 124209. http://dx.doi.org/10.1016/j.polymer.2021.124209.

18 Yin, Z., Lu, J., Yu, X., Jia, P., Tang, G., Zhou, X., Lu, T., Guo, L., Wang, B., Song, L., & Hu, Y. (2021). Construction of a core-shell structure compound: ammonium polyphosphate wrapped by rare earth compound to achieve superior smoke and toxic gases suppression for flame retardant flexible polyurethane foam composites. Composites Communications, 28, 100939. http://dx.doi.org/10.1016/j.coco.2021.100939.

19 Farnaby, J. H., Chowdhury, T., Horsewill, S. J., Wilson, B., & Jaroschik, F. (2021). Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2019. Coordination Chemistry Reviews, 437, 213830. http://dx.doi.org/10.1016/j.ccr.2021.213830.

20 Ganguli, R., & Cook, D. R. (2018). Rare earths: a review of the landscape. MRS Energy & Sustainability, 5(1), 6. http://dx.doi.org/10.1557/mre.2018.7.

21 Kohri, M., Yanagimoto, K., Kohaku, K., Shiomoto, S., Kobayashi, M., Imai, A., Shiba, F., Taniguchi, T., & Kishikawa, K. (2018). Magnetically responsive polymer network constructed by poly(acrylic acid) and holmium. Macromolecules, 51(17), 6740-6745. http://dx.doi.org/10.1021/acs.macromol.8b01550.

22 Jiu, H., Zhang, L., Liu, G., & Fan, T. (2009). Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix. Journal of Luminescence, 129(3), 317-319. http://dx.doi.org/10.1016/j.jlumin.2008.10.015.

23 Cao, F., Huang, T., Wang, Y., Liu, F., Chen, L., Ling, J., & Sun, J. (2015). Novel lanthanide-polymer complexes for dye-free dual modal probes for MRI and fluorescence imaging. Polymer Chemistry, 6(46), 7949-7957. http://dx.doi.org/10.1039/C5PY01011J.

24 Philip, P., Thomas, P., Jose, E. T., Philip, K. C., & Thomas, P. C. (2019). Structural and optical properties of synthesized poly(methyl methacrylate) (PMMA) and lanthanide β-diketonate complexes incorporated electrospun PMMA nanofibres for optical devices. Bulletin of Materials Science, 42(5), 218. http://dx.doi.org/10.1007/s12034-019-1893-2.

25 Philip, P., Jose, T., Jose, A., & Cherian, S. K. (2021). Studies on the structural and optical properties of samarium β-diketonate complex incorporated electrospun poly(methylmethacrylate) nanofibres with different architectures. Luminescence, 36(4), 1032-1047. http://dx.doi.org/10.1002/bio.4029. PMid:33570221.

26 Dang, D. H., Thompson, K. A., Ma, L., Nguyen, H. Q., Luu, S. T., Duong, M. T. N., & Kernaghan, A. (2021). Toward the circular economy of rare earth elements: a review of abundance, extraction, applications, and environmental impacts. Archives of Environmental Contamination and Toxicology, 81(4), 521-530. http://dx.doi.org/10.1007/s00244-021-00867-7. PMid:34170356.

27 Serra, O. A. (2011). Rare earths: Brazil × China. Journal of the Brazilian Chemical Society, 22(5), 811-812. http://dx.doi.org/10.1590/S0103-50532011000500001.

28 Sousa, P. C., Fo., & Serra, O. A. (2014). Rare earths in Brazil: historical aspects, production, and perspectives. Quimica Nova, 37(4). http://dx.doi.org/10.5935/0100-4042.20140121.

29 Pegoraro, G. M., Alves, L. R., Carriello, G. M., Janolla, T. A., Mambrini, G. P., Rezende, M. L., & Menezes, A. J. (2023). Polyurethane and rare-earth materials: a review. The Journal of Engineering and Exact Sciences, 9(3), 15627-01e. http://dx.doi.org/10.18540/jcecvl9iss3pp15627-01e.

30 Prisacariu, C., Scortanu, E., & Agapie, B. (2011). Synthesis and characterization of dibenzyl based polyurethane blends obtained via the one shot synthesis route. Procedia Engineering, 10, 984-989. http://dx.doi.org/10.1016/j.proeng.2011.04.162.

31 Cinelli, P., Anguillesi, I., & Lazzeri, A. (2013). Green synthesis of flexible polyurethane foams from liquefied lignin. European Polymer Journal, 49(6), 1174-1184. http://dx.doi.org/10.1016/j.eurpolymj.2013.04.005.

32 Trovati, G., Sanches, E. A., Claro Neto, S., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115(1), 263-268. http://dx.doi.org/10.1002/app.31096.

33 Gao, X., Zhu, Y., Zhao, X., Wang, Z., An, D., Ma, Y., Guan, S., Du, Y., & Zhou, B. (2011). Synthesis and characterization of polyurethane/SiO2 nanocomposites. Applied Surface Science, 257(10), 4719-4724. http://dx.doi.org/10.1016/j.apsusc.2010.12.138.

34 Dias, A., Khalam, L. A., Sebastian, M. T., Lage, M. M., Matinaga, F. M., & Moreira, R. L. (2008). Raman scattering and infrared spectroscopy of chemically substituted Sr2LnTaO6 (Ln = Lanthanides, Y, and In) Double Perovskites. Chemistry of Materials, 20(16), 5253-5259. http://dx.doi.org/10.1021/cm800969m.

35 Romanova, V., Begishev, V., Karmanov, V., Kondyurin, A., & Maitz, M. F. (2002). Fourier transform Raman and Fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. Journal of Raman Spectroscopy: JRS, 33(10), 769-777. http://dx.doi.org/10.1002/jrs.914.

36 Parnell, S., Min, K., & Cakmak, M. (2003). Kinetic studies of polyurethane polymerization with Raman spectroscopy. Polymer, 44(18), 5137-5144. http://dx.doi.org/10.1016/S0032-3861(03)00468-3.

37 Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts. Chichester: John Wiley & Sons.

38 Alaa, M., Yusoh, K., & Hasany, S. F. (2015). Pure polyurethane and castor oil based polyurethane: synthesis and characterization. Journal of Mechanical Engineering Science, 8, 1507-1515. http://dx.doi.org/10.15282/jmes.8.2015.25.0147.

39 Madhuri, S. N., & Rukmani, K. (2019). Synthesis and concentration dependent tuning of PVA-Sm2O3 nanocomposite films for optoelectronic applications. Materials Research Express, 6(7), 075017. http://dx.doi.org/10.1088/2053-1591/ab1326.

40 Liu, T., Zhang, Shao, & Li, (2003). Synthesis and characteristics of Sm2O3 and Nd2O3 nanoparticles. Langmuir, 19(18), 7569-7572. http://dx.doi.org/10.1021/la034350l.

41 Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: in situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. http://dx.doi.org/10.1016/j.ssc.2007.11.019.

42 Park, C.-H., Kang, S.-J., Tijing, L. D., Pant, H. R., & Kim, C. S. (2013). Inductive heating of electrospun Fe2O3/polyurethane composite mat under high-frequency magnetic field. Ceramics International, 39(8), 9785-9790. http://dx.doi.org/10.1016/j.ceramint.2013.05.042.

43 Deng, F., Zhang, Y., Li, X., Liu, Y., Shi, Z., & Wang, Y. (2019). Synthesis and mechanical properties of dopamine modified titanium dioxide/waterborne polyurethane composites. Polymer Composites, 40(1), 328-336. http://dx.doi.org/10.1002/pc.24654.

44 Jothi, K. J., Balachandran, S., Mohanraj, K., Prakash, N., Subhasri, A., Krishnan, P. S. G., & Palanivelu, K. (2022). Fabrications of hybrid Polyurethane-Pd doped ZrO2 smart carriers for self-healing high corrosion protective coatings. Environmental Research, 211, 113095. http://dx.doi.org/10.1016/j.envres.2022.113095. PMid:35283074.

45 Mortazavi-Derazkola, S., Zinatloo-Ajabshir, S., & Salavati-Niasari, M. (2017). Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Advanced Powder Technology, 28(3), 747-754. http://dx.doi.org/10.1016/j.apt.2016.11.022.

46 Abu-Zied, B. M., & Asiri, A. M. (2019). Genesis of nanocrystalline Ho2O3 via thermal decomposition of holmium acetate: structure evolution and electrical conductivity properties. Journal of Rare Earths, 37(2), 185-192. http://dx.doi.org/10.1016/j.jre.2018.05.017.

47 Wang, J. L., Li, Y., Chain, W., Wang, X., Li, H. T., Liu, S. H., Zhang, J. R., & Xu, M. X. (2013). Synthesis and characterization of rare earth/polyurethane composite material. Advanced Materials Research, 763, 125-129. http://dx.doi.org/10.4028/www.scientific.net/AMR.763.125.

48 Carriço, C. S. (2017). Obtenção de espumas de poliuretano a partir de coprodutos da cadeia dos biocombustíveis e resíduos agroindustriais (Doctoral thesis). Universidade Federal de Minas Gerais, Belo Horizonte. Retrieved in 2023, March 22, from https://repositorio.ufmg.br/handle/1843/SFSA-ARZULR

49 Dolomanova, V., Rauhe, J. C. M., Jensen, L. R., Pyrz, R., & Timmons, A. B. (2011). Mechanical properties and morphology of nano-reinforced rigid PU foam. Journal of Cellular Plastics, 47(1), 81-93. http://dx.doi.org/10.1177/0021955X10392200.

50 Reignier, J., Alcouffe, P., Méchin, F., & Fenouillot, F. (2019). The morphology of rigid polyurethane foam matrix and its evolution with time during foaming – New insight by cryogenic scanning electron microscopy. Journal of Colloid and Interface Science, 552, 153-165. http://dx.doi.org/10.1016/j.jcis.2019.05.032. PMid:31125826.

51 Mello, D., Pezzin, S. H., & Amico, S. C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708. http://dx.doi.org/10.1016/j.polymertesting.2009.05.014.

52 Silva, R. P. (2017). Utilização de pó de poli(tereftalato de etileno) pós-consumo e do óleo de mamona (Ricinus communis) no desenvolvimento de espuma flexível (Master’s dissertation). Universidade Federal de Campina Grande, Campina Grande. Retrieved in 2023, March 22, from http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/13952

53 Santin, C. K., & Petró, F. (2022). Desenvolvimento e caracterização de espuma poliuretânica à base de Difenilmetano diisocianato (MDI) e óleo de linhaça (Linum usitatissimun L.). Revista Liberato, 23(39), 77-88. Retrieved in 2023, March 22, from https://revista.liberato.com.br/index.php/revista/article/view/77-88

54 Sung, G., & Kim, J. H. (2017). Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Composites Science and Technology, 146, 147-154. http://dx.doi.org/10.1016/j.compscitech.2017.04.029.
 

65ce0359a953953d4d27f322 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections