Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230018
Polímeros: Ciência e Tecnologia
Original Article

Thermal and flammability behavior of walnut shell reinforced epoxy composites

Menderes Koyunucu; Göksel Ulay

Downloads: 2
Views: 235

Abstract

In this study, walnut shell particles obtained through the grinding of walnut shells were used as a reinforcing material and pumice powder as a filler for developing epoxy-based composites characterized by reduced flammability. Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Underwriters Laboratories (UL)-94 vertical tests were carried out for evaluating the effectiveness of these pumice powder treatments. Under the UL-94 vertical test, composites (S1, S2, S3, S4, S5 and S6) with 20% pumice powder (i.e., by mass content of walnut particles were not self-extinguished, and could not be classified. S7 and S8 composites (40wt% and 50%) assigned a V-2 rating, which was the least flammable composite However, the mechanical tensile tests showed that the pumice powder treated composites increased their tensile strength. The morphological analysis showed an enhancement of the interfacial adhesion of the composites achieved by pumice powder.

 

 

Keywords

thermal properties, walnut particles, pumice, tensile strength, flammability

References

1 Singh, V. (2014). Mechanical behavior of walnut (Juglans L.) shell particles reinforced bio-composite. Science and Engineering of Composite Materials, 22(4), 383-390.

2 Ayrilmis, N., Kaymakci, A., & Ozdemir, F. (2013). Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. Journal of Industrial and Engineering Chemistry, 19(13), 908-914. http://dx.doi.org/10.1016/j.jiec.2012.11.006.

3 Pradhan, P., & Satapathy, A. (2022). Physico-mechanical characterization and thermal property evaluation of polyester composites filled with walnut shell powder. Polymers & Polymer Composites, 30, 09673911221077808. http://dx.doi.org/10.1177/09673911221077808.

4 Ramesan, M.-T., Chippy, J., Jayakrishnan, P., & Anilkumar, T. (2018). Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polymer Composites, 39(1), 38-45. http://dx.doi.org/10.1002/pc.23899.

5 Sever, K., Atagür, M., Tunçalp, M., Altay, L., Seki, Y., & Sarıkanat, M. (2018). The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 32(8), 1092-1106. http://dx.doi.org/10.1177/0892705718785692.

6 Sahin, A. E., Yildiran, Y., Avcu, E., Fidan, S., & Sinmazcelik, T. (2014). Mechanical and thermal properties of pumice powder filled PPS composites. Acta Physica Polonica A, 125(2), 518-520. http://dx.doi.org/10.12693/APhysPolA.125.518.

7 Ramesan, M. T., George, A., Jayakrishnan, P., & Kalaprasad, G. (2016). Role of pumice particles in the thermal, electrical and mechanical properties of poly (vinyl alcohol) /poly(vinyl pyrrolidone) composites. Journal of Thermal Analysis and Calorimetry, 126(2), 551-519. http://dx.doi.org/10.1007/s10973-016-5507-6.

8 Fleischer, C. A., & Zupan, M. (2010). Mechanical performance of pumice-reinforced epoxy composites. Journal of Composite Materials, 44(23), 2679-2696. http://dx.doi.org/10.1177/0021998310369575.

9 Montava-Jordá, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced interfacial adhesion of polylactide/poly(ε-caprolactone)/walnut shell flour composites by reactive extrusion with maleinized linseed oil. Polymers, 11(5), 758. http://dx.doi.org/10.3390/polym11050758. PMid:31052255.

10 American Society for Testing and Materials - ASTM. (2017). ASTM D3039/D3039M-17: standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM.

11 Underwriters Laboratories Inc - UL. (2001). UL-94: standard for safety for test for flammability of plastic materials for parts in devices and appliances. USA: Underwriters Laboratories Inc.

12 Umemura, T., Arao, Y., Nakamura, S., Tomita, Y., & Tanaka, T. (2014). Synergy effect of wood flour and fire retardants in flammability of wood-plastic composite. Energy Procedia, 56, 48-56. http://dx.doi.org/10.1016/j.egypro.2014.07.130.

13 Koyuncu, M. (2018). The influence of pumice dust on tensıle, stiffness properties and flame retardant of epoxy/ wood flour composites. Journal of Tropical Forest Science, 30(1), 89-94. http://dx.doi.org/10.26525/jtfs2018.30.1.8994.

14 Salasinska, K., Barczewski, M., Borucka, M., Gorny, R. L., Kozikowski, P., Celiński, M., & Gajek, A. (2019). Thermal stability, fire and smoke behaviour of epoxy composites modified with plant waste fillers. Polymers, 11(8), 1234. http://dx.doi.org/10.3390/polym11081234. PMid:31349642.

15 Loganathan, T. M., Sultan, M. T. H., Ahsan, Q., Shah, A. U. M., Jawaid, M., Talib, A. R. A., & Basri, A. A. (2021). Physico‐mechanical and flammability properties of cyrtostachys renda fibers reinforced phenolic resin bio composites. Journal of Polymers and the Environment, 29(11), 3703-3720. http://dx.doi.org/10.1007/s10924-021-02135-0.

16 Bachtiar, E. V., Kurkowiak, K., Yan, L., Kasal, B., & Kolb, T. (2019). Thermal stability, fire performance, and mechanical properties of natural fibre fabric-reinforced polymer composites with different fire retardants. Polymers, 11(4), 699. http://dx.doi.org/10.3390/polym11040699. PMid:30995829.

17 Pratheesh, K., Narayanasamy, P., Prithivirajan, R., Ramkumar, T., Balasundar, P., Indran, S., Sanjay, M. R., & Siengchin, S. (in press). Cenosphere filled epoxy composites: structural, mechanical, and dynamic mechanical studies. Biomass Conversion and Biorefinery. http://dx.doi.org/10.1007/s13399-023-04154-4.

18 Zare, Y., Rhee, K. Y., & Hui, D. (2017). Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Composites. Part B, Engineering, 122, 41-46. http://dx.doi.org/10.1016/j.compositesb.2017.04.008.

19 Altuntas, E., Narlioglu, N., & Alma, M. (2017). Investigation of the fire thermal, and mechanical properties of zinc borate and syhergic fire retardants on composites produced with PP-MDF wastes. BioResources, 12(4), 6977-6983. http://dx.doi.org/10.15376/biores.12.4.6971-6983.

20 Prabhakaran, S., Zaynab, M. A., Chinnarasu, K., & Keerthana, J. (2021). Performance evolution of walnut shell particle filled glass fiber reinforced composite. National Volatiles & Essential Oils, 8(5), 3458-3467. Retrieved in 2023, March 30, from https://www.nveo.org/index.php/journal/article/view/922/847

21 Wang, J., Zhou, W., Wei, Z.-Y., Ding, Z.-J., Ma, L.-H., & Liu, J. (2022). Effects of various porosities on the damage evolution behavior of carbon fiber/epoxy composites using acoustic emission and micro-CT. Journal of Composite Materials, 56(10), 1541-1558. http://dx.doi.org/10.1177/00219983211073727.

22 Ali, J. B., Musa, A. B., Danladi, A., Bukhari, M. M., & Nyakuma, B. B. (2022). Physico-mechanical properties of unsaturated polyester resin reinforced maize cob and jute fiber composites. Journal of Natural Fibers, 19(9), 3195-3207. http://dx.doi.org/10.1080/15440478.2020.1841062.

23 Soni, P., & Sinha, S. (2022). Synergistic effect of alkali and silane treatment on mechanical, flammability, and thermal degradation of hemp fiber/epoxy composite. Polymer Composites, 43(9), 6204-6215. http://dx.doi.org/10.1002/pc.26924.

24 Salasinska, K., Barczewski, M., Gorny, R., & Klozinski, A. (2018). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. http://dx.doi.org/10.1007/s00289-017-2163-3.

25 Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. http://dx.doi.org/10.1016/j.polymertesting.2019.01.017.
 

64f72208a953955271009b63 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections