Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20230009
Polímeros: Ciência e Tecnologia
Original Article

Effect of thyme essential oil on the properties of poly (butylene adipate-co-terephthalate)(PBAT)

Pâmela Barcelar Ferreira Gomes da Silva de Luna; Viviane Fonseca Caetano; Michelle Félix de Andrade; Ivo Diego de Lima Silva; Tiago Lopes de Araújo; Karina Carvalho de Souza; Yêda Medeiros Bastos de Almeida; Glória Maria Vinhas

Downloads: 0
Views: 388

Abstract

In this study, thyme essential oil was added to poly (butylene adipate-co-terephthalate) (PBAT) films in a variety of compositions (0, 1, 2, 5, 10, 15, and 20% w/w), and the effect of the essential oil on the PBAT's characteristics was evaluated. The films were produced using the casting technique. Thyme essential oil (EO) was evaluated by mid-infrared, gas chromatography-mass spectrometer, and antimicrobial activity. The films were evaluated by mid-infrared, mechanical, and thermal tests. The results demonstrated that EO has a higher concentration of o-cymene and antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus. The films were analyzed for their mechanical and thermal properties according to the compositions tested. The films have shown promise for use as active packaging.

 

 

Keywords

PBAT, thyme essential oil, active packaging

References

1 Ardusso, M., Forero-López, A. D., Buzzi, N. S., Spetterac, C. V., & Fernández-Severinia, M. D. (2021). COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. The Science of the Total Environment, 763, 144365. http://dx.doi.org/10.1016/j.scitotenv.2020.144365. PMid:33360513.

2 Skariyachan, S., Patil, A. A., Shankar, A., Manjunath, M., Bachappanavar, N., & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation & Stability, 149, 52-68. http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.018.

3 Bonilla, J., Paiano, R. B., Lourenço, R. V., Bittante, A. M. Q. B., & Sobral, P. J. A. (2020). Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: respirometric and physical-chemical analysis. International Journal of Biological Macromolecules, 164, 1399-1412. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.309. PMid:32763389.

4 Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3), 582-593. http://dx.doi.org/10.1111/jam.13472. PMid:28419654.

5 Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. http://dx.doi.org/10.1016/j.aiepr.2019.11.002.

6 Moraes, L. E. P. T. Fo, Andrade, M. F., Freitas, L. F., Palha, M. L. A. P. F., & Vinhas, G. M. (2022). Development and characterization of poly(butylene adipateco-terephthalate) (PBAT) antimicrobial films with clove and cinnamon essential oils. Journal of Food Processing and Preservation, 46(4), e16489. http://dx.doi.org/10.1111/jfpp.16489.

7 Guo, G., Zhang, C., Du, Z., Zou, W., Tian, H., Xiang, A., & Li, H. (2015). Structure and property of biodegradable soy protein isolate/PBAT blends. Industrial Crops and Products, 74, 731-736. http://dx.doi.org/10.1016/j.indcrop.2015.06.009.

8 Andrade, M. F., Silva, I. D. L., Silva, G. A., Cavalcante, P. V. D., Silva, F. T., Almeida, Y. M. B., Vinhas, G. M., & Carvalho, L. H. (2020). A study of poly (butylene adipate-co-terephthalate)/orange essential oil films for application in active antimicrobial packaging. Lebensmittel-Wissenschaft + Technologie, 125, 109148. http://dx.doi.org/10.1016/j.lwt.2020.109148.

9 Zuo, L.-Z., Li, H.-X., Lin, L., Sun, Y.-X., Diao, Z.-H., Liu, S., Zhang, Z.-Y., & Xu, X.-R. (2019). Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere, 215, 25-32. http://dx.doi.org/10.1016/j.chemosphere.2018.09.173. PMid:30300808.

10 Jian, J., Xiangbin, Z., & Xianbo, H. (2020). An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research, 3(1), 9-26. http://dx.doi.org/10.1016/j.aiepr.2020.01.001.

11 Cui, H., Ma, C., Li, C., & Lin, L. (2016). Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control, 70, 183-190. http://dx.doi.org/10.1016/j.foodcont.2016.05.056.

12 Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. http://dx.doi.org/10.1016/j.foodhyd.2018.02.028.

13 Hu, J., Zhang, Y., Xiao, Z., & Wang, X. (2018). Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Industrial Crops and Products, 122, 85-92. http://dx.doi.org/10.1016/j.indcrop.2018.05.058.

14 Zhang, Y., Zhou, L., Zhang, C., Show, P. L., Du, A., Fu, J., & Ashokkumar, V. (2020). Preparation and characterization of curdlan/polyvinyl alcohol/ thyme essential oil blending film and its application to chilled meat preservation. Carbohydrate Polymers, 247, 116670. http://dx.doi.org/10.1016/j.carbpol.2020.116670. PMid:32829798.

15 Borges, A. G. F. C., Pessoa, P. H., Araújo, T. L., Souza, K. C., Carneiro, C. N., Luna, P. B. F. G. S., Vinhas, G. M., & Almeida, Y. M. B. (2022). Preparation and characterization of poly(butylene adipate-co-terephthalate) films added with Melaleuca alternifolia essential oil. Research, Social Development, 11(8), e55511831332. http://dx.doi.org/10.33448/rsd-v11i8.31332.

16 Laorenza, Y., & Harnkarnsujarit, N. (2021). Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp. Food Chemistry, 363, 130252. http://dx.doi.org/10.1016/j.foodchem.2021.130252. PMid:34118755.

17 Cardoso, L. G., Santos, J. C. P., Camilloto, G. P., Miranda, A. L., Druzian, J. I., & Guimarães, A. G. (2017). Development of active films poly (butylene adipate co-terephthalate) – PBAT incorporated with oregano essential oil and application in fish fillet preservation. Industrial Crops and Products, 108, 388-397. http://dx.doi.org/10.1016/j.indcrop.2017.06.058.

18 ASTM International. (2002). ASTM D 882-02: standard test method for tensile properties of thin plastic sheeting. USA: ASTM International. http://dx.doi.org/10.1520/D0882-18.

19 Pereira, R. B., & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto. Polímeros, 24(2), 198-202. http://dx.doi.org/10.4322/polimeros.2014.042.

20 Sadekuzzaman, M., Mizan, M. F. R., Kim, H.-S., Yang, S., & Ha, S.-D. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. Lebensmittel-Wissenschaft + Technologie, 89, 134-139. http://dx.doi.org/10.1016/j.lwt.2017.10.042.

21 Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, 94(3), 223-253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022. PMid:15246235.

22 Pirbalouti, A. G., Hashemi, M., & Ghahfarokhi, F. T. (2013). Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Industrial Crops and Products, 48, 43-48. http://dx.doi.org/10.1016/j.indcrop.2013.04.004.

23 Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29(2), 130-135. http://dx.doi.org/10.1046/j.1472-765X.1999.00605.x. PMid:10499301.

24 The National Committee for Clinical Laboratory Standards - NCCLS. (2023). M2-A8: performance standards for antimicrobial disk susceptibility test. USA: NCCLS.

25 Valeriano, C., Piccoli, R. H., Cardoso, M. G., & Alves, E. (2012). Atividade antimicrobiana de óleos essenciais em bactérias patogênicas de origem alimentar. Revista Brasileira de Plantas Medicinais, 14(1), 57-67. http://dx.doi.org/10.1590/S1516-05722012000100009.

26 Lemos, M. F., Lemos, M. F., Pacheco, H. P., Guimarães, A. C., Fronza, M., Endringer, D. C., & Scherer, R. (2017). Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Industrial Crops and Products, 95, 543-548. http://dx.doi.org/10.1016/j.indcrop.2016.11.008.

27 Mirsharifi, S. M., Sami, M., Jazaeri, M., & Rezaei, A. (2023). Production, characterization, and antimicrobial activity of almond gum/ polyvinyl alcohol/chitosan composite films containing thyme essential oil nanoemulsion for extending the shelf-life of chicken breast fillets. International Journal of Biological Macromolecules, 227, 405-415. http://dx.doi.org/10.1016/j.ijbiomac.2022.12.183. PMid:36563800.

28 Lin, L., Zhu, Y., & Cui, H. (2018). Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. Lebensmittel-Wissenschaft + Technologie, 97, 711-718. http://dx.doi.org/10.1016/j.lwt.2018.08.015.

29 Valderrama, A. C. S., & De, G. C. R. (2017). Traceability of Active Compounds of Essential Oils in Antimicrobial Food Packaging Using a Chemometric Method by ATR-FTIR. American Journal of Analytical Chemistry, 8(11), 726-741. http://dx.doi.org/10.4236/ajac.2017.811053.

30 Li, X., Tan, D., Xie, L., Sun, H., Sun, S., Zhong, G., & Ren, P. (2018). Effect of surface property of halloysite on the crystallization behavior of PBAT. Applied Clay Science, 157, 218-226. http://dx.doi.org/10.1016/j.clay.2018.02.005.

31 Bheemaneni, G., Saravana, S., & Kandaswamy, R. (2018). Processing and Characterization of Poly (butylene adipate-co-terephthalate) / Wollastonite Biocomposites for Medical Applications. Materials Today: Proceedings, 5(1), 1807-1816. http://dx.doi.org/10.1016/j.matpr.2017.11.279.

32 Brandelero, R. P. H., Grossmann, M. V., & Yamashita, F. (2013). Hidrofilicidade de filmes de amido/poli(butileno adipato co-tereftalato) (pbat) adicionados de tween 80 e óleo de soja. Polímeros, 23(2), 270-275. http://dx.doi.org/10.1590/S0104-14282013005000011.

33 Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2065), 20150202. http://dx.doi.org/10.1098/rsta.2015.0202. PMid:26953178.

34 Hao, Y., Chu, Y., Zhang, M., Shi, W., Chen, Y., Li, D., & Li, L. (2022). Preparation of functional degradable antibacterial film and application in fresh-keeping of grass carp. Journal of Agriculture and Food Research, 9, 100341. http://dx.doi.org/10.1016/j.jafr.2022.100341.

35 Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I., & Mauriello, G. (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polymer Engineering and Science, 49(7), 1447-1455. http://dx.doi.org/10.1002/pen.21191.

36 Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., & Rahmat, A. R. (2014). Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innovative Food Science & Emerging Technologies, 26, 406-414. http://dx.doi.org/10.1016/j.ifset.2014.05.009.

37 Pelissari, F. M. (2009). Produção e caracterização de filmes de amido de mandioca, quitosana e glicerol com incorporação de óleo essencial de orégano (Master's thesis). Londrina: Universidade Estadual de Londrina.

38 Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation & Stability, 94(1), 74-82. http://dx.doi.org/10.1016/j.polymdegradstab.2008.10.004.

39 Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation & Stability, 97(10), 1898-1914. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028.

40 Kijchavengkul, T., Auras, R., & Rubino, M. (2008). Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC. Polymer Testing, 27(1), 55-60. http://dx.doi.org/10.1016/j.polymertesting.2007.08.007.

41 Ibrahim, N. A., Rahim, N. M., Wan, Y. W. Z., & Sharif, J. (2011). A study of poly vinyl chloride / poly(butylene adipate-co-terephthalate) blends. Journal of Polymer Research, 18(5), 891-896. http://dx.doi.org/10.1007/s10965-010-9486-1.
 

660c46f8a953957a6077a373 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections