Some mechanical properties of WPCs with wood flour and walnut shell flour
Bekir Cihad Bal
Abstract
Keywords
References
1 Rodrigues, A., Carvalho, B. M., Pinheiro, L. A., Bretãs, R. E., Canevarolo, S. V., & Marini, J. (2013). Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites.
2 Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics?
3 Leao, A. L., Teixeira, R. M. F., & Ferrao, P. C. (2008). Production of reinforced composites with natural fibers for industrial applications-extrusion and injection WPC.
4 Jordá-Vilaplana, A., Carbonell-Verdú, A., Samper, M. D., Pop, A., & Garcia-Sanoguera, D. (2017). Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers.
5 Sobczak, L., Lang, R. W., & Haider, A. (2012). Polypropylene composites with natural fibers and wood-General mechanical property profiles.
6 Dolza, C., Fages, E., Gonga, E., Gomez-Caturla, J., Balart, R., & Quiles-Carrillo, L. (2021). Development and characterization of environmentally friendly wood plastic composites from biobased polyethylene and short natural fibers processed by injection moulding.
7 Hyvärinen, M., & Kärki, T. (2015). The effects of the substitution of wood fiberwith agro-based fiber (Barley Straw) on the properties of natural fiber/polypropylene composites. In
8 Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: mechanical and thermal properties.
9 Essabir, H., Bensalah, M. O., Bouhfid, R., & Qaiss, A. (2014). Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties.
10 Barczewski, M., Andrzejewski, J., Majchrowski, R., Dobrzycki, K., & Formela, K. (2021). Mechanical properties, microstructure and surface quality of polypropylene green composites as a function of sunflower husk waste filler particle size and content.
11 Taşdemir, M. (2022). Effect of thermal aging on the mechanical properties of high density polyethylene/nut shell polymer composite.
12 Akbaş, S., Tufan, M., Güleç, T., Taşçioğlu, C., & Peker, H. (2013). The usage of nutshell in the production of polypropylene based on polymer composite panels.
13 Sutivisedsak, N., Cheng, H. N., Burks, C. S., Johnson, J. A., Siegel, J. P., Civerolo, E. L., & Biswas, A. (2012). Use of nutshells as fillers in polymer composites.
14 Włodarczyk-Fligier, A., Polok-Rubiniec, M., & Chmielnicki, B. (2021). Polypropylene-matrix polymer composites with natural filler.
15 Dobrzyńska-Mizera, M., Knitter, M., & Barczewski, M. (2019). Walnut shells as a filler for polymeric materials.
16 Tabar, M. M., Tabarsa, T., Mashkour, M., & Khazaeian, A. (2015). Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials.
17 Salasinska, K., & Ryszkowska, J. (2017). Physico-mechanical properties and dimensional stability of natural fibre composites fabricated from polyethylene waste and walnut shells. In
18 Zahedi, M., Pirayesh, H., Khanjanzadeh, H., & Tabar, M. M. (2013). Organo-modified montmorillonite reinforced walnut shell/polypropylene composites.
19 Zhang, Q., Li, Y., Cai, H., Lin, X., Yi, W., & Zhang, J. (2019). Properties comparison of high density polyethylene composites filled with three kinds of shell fibers.
20 American Society for Testing and Materials - ASTM. (2015).
21 American Society for Testing and Materials - ASTM. (2022).
22 Matuana, L. M., & Stark, N. M. (2015). The use of wood fibers as reinforcements in composites. In O. Faruk, & M. Sain (Eds.),
23 Mengeloglu, F., Basboga, İ. H., & Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites.
24 Avci, E., Acar, M., Gonultas, O., & Candan, Z. (2018). Manufacturing biocomposites using black pine bark and oak bark.
25 Çavuş, V. (2020). Selected properties of mahogany wood flour filled polypropylene composites: the effect of maleic anhydride-grafted polypropylene (MAPP).
26 Bal, B. C. (2022). A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour.
27 Bal, B. C. (2022). Mechanical properties of wood-plastic composites produced with recycled polyethylene, used Tetra Pak® boxes, and wood flour.
28 Stark, N. M., & Berger, M. J. (1997). Effect of particle size on properties of wood-flour reinforced polypropylene composites. In
29 Çavuş, V., & Mengeloğlu, F. (2017). The effect of lignocellulosic filler types and concentrations on the mechanical properties of wood plastic composites produced with polypropylene having various melt flowing index (MFI).
30 Ayrilmis, N., Kaymakci, A., & Ozdemir, F. (2013). Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour.
31 Zimmermann, M. V., Turella, T. C., Santana, R. M. C., & Zattera, A. J. (2014). The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites.
32 Bal, B. C. (2023). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour.
33 Berger, M. J., & Stark, N. M. (1997). Investigations of species effects in an injection-molding-grade, wood-filled polypropylene. In
34 Mengeloğlu, F., & Karakuş, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites.
35 Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., & Altuntaş, E. (2014). Utilisation of MDF waste for wood plastic composites production.
36 Altuntaş, E., Yılmaz, E., & Salan, T. (2017). Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites.
37 Narlıoğlu, N., Salan, T., Çetin, N. S., & Alma, M. H. (2018). Evaluation of furniture industry wastes in polymer composite production.
38 Fiore, V., Botta, L., Scaffaro, R., Valenza, A., & Pirrotta, A. (2014). PLA based biocomposites reinforced with Arundo donax fillers.
39 Tobón, A. E. D., Chaparro, W. A. A., & Rivera, W. G. (2014). Improvement of properties of tension in WPC of LDPE: HIPS/natural fiber through crosslinking with DCP.
40 Bouafif, H., Koubaa, A., Perré, P., & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites.
41 Rao, D. K. (2015). Tensile, compressive and flexural behaviour with characterization of hybrid bio-composite reinforced with walnut shell particles and coconut fibres. In
42 Pekgözlü, A. K., Gülsoy, S. K., & Ayçiçek, Y. (2017). Effect of stem height on the fiber morphology and chemical composition of European Black Pine (Pinus nigra Arnold.).
43 Kırcı, H., & Ateş, S. (2002). Anadolu karaçamı (Pinus nigra subsp. pallasiana) odunlarının asli hücre çeperi bileşenlerinin belirlenmesi ve kağıt hamuru üretimine uygunluğunun incelenmesi. In
44 Kılıç, A., Sarıusta, S. E., & Hafızoğlu, H. (2010). Chemical structure of compression wood of Pinus sylvestris, P. nigra and P. brutia.
45 Ali, E. S., & Ahmad, S. (2012). Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay.
46 Demirbas, A. (2006). Effect of temperature on pyrolysis products from four nut shells.
47 Pirayesh, H., Khazaeian, A., & Tabarsa, T. (2012). (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing.