Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Some mechanical properties of WPCs with wood flour and walnut shell flour

Bekir Cihad Bal

Downloads: 0
Views: 36


This study used a high-density polyethylene (HDPE) polymer matrix, pine-wood flour (PWF) and walnut-shell flour (WSF) to produce wood-plastic composite (WPC) boards. The PWF and WSF filler amounts were adjusted to 20%, 30%, and 40% by weight. Some of the mechanical properties of the produced composite boards were comparatively investigated, such as the flexural strength, flexural modulus, deformation at break, tensile strength, tensile modulus, and elongation at break. Flexural tests and tensile tests were performed according to ASTM D790 and ASTM D638, respectively. According to the data obtained, the flexural strength, deformation at break, tensile strength, and elongation at break decreased as the filler content increased. In addition, the flexural modulus values of all the test groups increased with the filler content. However, the tensile modulus values of the test groups that used the WSF filler were smaller than those of the groups without filler.




HDPE, pine wood flour, walnut shell flour, WPC


1 Rodrigues, A., Carvalho, B. M., Pinheiro, L. A., Bretãs, R. E., Canevarolo, S. V., & Marini, J. (2013). Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites. Polímeros: Ciência e Tecnologia, 23(3), 312-319. http://dx.doi.org/10.4322/polimeros.2013.032.

2 Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. http://dx.doi.org/10.1016/S0266-3538(03)00096-4.

3 Leao, A. L., Teixeira, R. M. F., & Ferrao, P. C. (2008). Production of reinforced composites with natural fibers for industrial applications-extrusion and injection WPC. Molecular Crystals and Liquid Crystals, 484(1), 157/[523]-166/[532]. http://dx.doi.org/10.1080/15421400801904393.

4 Jordá-Vilaplana, A., Carbonell-Verdú, A., Samper, M. D., Pop, A., & Garcia-Sanoguera, D. (2017). Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers. Composites Science and Technology, 145, 1-9. http://dx.doi.org/10.1016/j.compscitech.2017.03.036.

5 Sobczak, L., Lang, R. W., & Haider, A. (2012). Polypropylene composites with natural fibers and wood-General mechanical property profiles. Composites Science and Technology, 72(5), 550-557. http://dx.doi.org/10.1016/j.compscitech.2011.12.013.

6 Dolza, C., Fages, E., Gonga, E., Gomez-Caturla, J., Balart, R., & Quiles-Carrillo, L. (2021). Development and characterization of environmentally friendly wood plastic composites from biobased polyethylene and short natural fibers processed by injection moulding. Polymers, 13(11), 1692. http://dx.doi.org/10.3390/polym13111692. PMid:34067283.

7 Hyvärinen, M., & Kärki, T. (2015). The effects of the substitution of wood fiberwith agro-based fiber (Barley Straw) on the properties of natural fiber/polypropylene composites. In 2015 the 4th International Conference on Material Science and Engineering Technology (ICMSET 2015) (No. 01014). Singapore: EDP Sciences. http://dx.doi.org/10.1051/matecconf/20153001014.

8 Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: mechanical and thermal properties. Materials & Design, 51, 225-230. http://dx.doi.org/10.1016/j.matdes.2013.04.031.

9 Essabir, H., Bensalah, M. O., Bouhfid, R., & Qaiss, A. (2014). Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties. Journal of Biobased Materials and Bioenergy, 8(3), 344-351. http://dx.doi.org/10.1166/jbmb.2014.1447.

10 Barczewski, M., Andrzejewski, J., Majchrowski, R., Dobrzycki, K., & Formela, K. (2021). Mechanical properties, microstructure and surface quality of polypropylene green composites as a function of sunflower husk waste filler particle size and content. Journal of Renewable Materials, 9(5), 841-853. http://dx.doi.org/10.32604/jrm.2021.014490.

11 Taşdemir, M. (2022). Effect of thermal aging on the mechanical properties of high density polyethylene/nut shell polymer composite. International Periodical of Recent Technologies in Applied Engineering, 3(1), 1-9. Retrieved in 2023, Jan 30, from https://dergipark.org.tr/en/pub/porta/issue/69017/1092080

12 Akbaş, S., Tufan, M., Güleç, T., Taşçioğlu, C., & Peker, H. (2013). The usage of nutshell in the production of polypropylene based on polymer composite panels. Artvin Coruh University Journal of Forestry Faculty, 14(1), 50-56. Retrieved in 2023, Jan 30, from http://ofd.artvin.edu.tr/en/pub/issue/2266/29867

13 Sutivisedsak, N., Cheng, H. N., Burks, C. S., Johnson, J. A., Siegel, J. P., Civerolo, E. L., & Biswas, A. (2012). Use of nutshells as fillers in polymer composites. Journal of Polymers and the Environment, 20(2), 305-314. http://dx.doi.org/10.1007/s10924-012-0420-y.

14 Włodarczyk-Fligier, A., Polok-Rubiniec, M., & Chmielnicki, B. (2021). Polypropylene-matrix polymer composites with natural filler. Archives of Metallurgy and Materials, 66(1), 313-319. http://dx.doi.org/10.24425/amm.2021.134789.

15 Dobrzyńska-Mizera, M., Knitter, M., & Barczewski, M. (2019). Walnut shells as a filler for polymeric materials. Drewno, 203, 153-168. http://dx.doi.org/10.12841/wood.1644-3985.D12.02.

16 Tabar, M. M., Tabarsa, T., Mashkour, M., & Khazaeian, A. (2015). Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials. Journal of the Indian Academy of Wood Science, 12(1), 15-21. http://dx.doi.org/10.1007/s13196-015-0139-1.

17 Salasinska, K., & Ryszkowska, J. (2017). Physico-mechanical properties and dimensional stability of natural fibre composites fabricated from polyethylene waste and walnut shells. In ECCM15 - 15th European Conference On Composite Materials. Italy: University of Padova.

18 Zahedi, M., Pirayesh, H., Khanjanzadeh, H., & Tabar, M. M. (2013). Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Materials & Design, 51, 803-809. http://dx.doi.org/10.1016/j.matdes.2013.05.007.

19 Zhang, Q., Li, Y., Cai, H., Lin, X., Yi, W., & Zhang, J. (2019). Properties comparison of high density polyethylene composites filled with three kinds of shell fibers. Results in Physics, 12, 1542-1546. http://dx.doi.org/10.1016/j.rinp.2018.09.054.

20 American Society for Testing and Materials - ASTM. (2015). ASTM D790-15 - Flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken: ASTM.

21 American Society for Testing and Materials - ASTM. (2022). ASTM D638-22 - Standard test method for tensile properties of plastics. West Conshohocken: ASTM.

22 Matuana, L. M., & Stark, N. M. (2015). The use of wood fibers as reinforcements in composites. In O. Faruk, & M. Sain (Eds.), Biofiber reinforcements in composite materials (pp. 648-688) UK: Woodhead Publishing.. http://dx.doi.org/10.1533/9781782421276.5.648.

23 Mengeloglu, F., Basboga, İ. H., & Aslan, T. (2015). Selected properties of furniture plant waste filled thermoplastic composites. Pro Ligno, 11(4), 199-206. Retrieved in 2023, Jan 30, from http://www.proligno.ro/en/articles/2015/4/Mengeloglu_selected_final.pdf

24 Avci, E., Acar, M., Gonultas, O., & Candan, Z. (2018). Manufacturing biocomposites using black pine bark and oak bark. BioResources, 13(1), 15-26. http://dx.doi.org/10.15376/biores.13.1.15-26.

25 Çavuş, V. (2020). Selected properties of mahogany wood flour filled polypropylene composites: the effect of maleic anhydride-grafted polypropylene (MAPP). BioResources, 15(2), 2227-2236. http://dx.doi.org/10.15376/biores.15.2.2227-2236.

26 Bal, B. C. (2022). A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour. Furniture and Wooden Material Research Journal, 5(1), 40-49. http://dx.doi.org/10.33725/mamad.1126534.

27 Bal, B. C. (2022). Mechanical properties of wood-plastic composites produced with recycled polyethylene, used Tetra Pak® boxes, and wood flour. BioResources, 17(4), 6569-6577. http://dx.doi.org/10.15376/biores.17.4.6569-6577.

28 Stark, N. M., & Berger, M. J. (1997). Effect of particle size on properties of wood-flour reinforced polypropylene composites. In Fourth International Conference on Woodfiber-Plastic Composites (pp. 134-143). USA: Forest Products Society.

29 Çavuş, V., & Mengeloğlu, F. (2017). The effect of lignocellulosic filler types and concentrations on the mechanical properties of wood plastic composites produced with polypropylene having various melt flowing index (MFI). Pamukkale University Journal of Engineering Sciences, 23(8), 994-999. http://dx.doi.org/10.5505/pajes.2017.80000.

30 Ayrilmis, N., Kaymakci, A., & Ozdemir, F. (2013). Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. Journal of Industrial and Engineering Chemistry, 19(3), 908-914. http://dx.doi.org/10.1016/j.jiec.2012.11.006.

31 Zimmermann, M. V., Turella, T. C., Santana, R. M. C., & Zattera, A. J. (2014). The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Materials & Design, 57, 660-666. http://dx.doi.org/10.1016/j.matdes.2014.01.010.

32 Bal, B. C. (2023). Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour. Furniture and Wooden Material Research Journal, 6(1), 70-79. http://dx.doi.org/10.33725/mamad.1301384.

33 Berger, M. J., & Stark, N. M. (1997). Investigations of species effects in an injection-molding-grade, wood-filled polypropylene. In Fourth International Conference on Woodfiber-Plastic Composites (pp. 19-25). USA: Forest Products Society.

34 Mengeloğlu, F., & Karakuş, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32(6), 537-546.

35 Özmen, N., Çetin, N. S., Narlıoğlu, N., Çavuş, V., & Altuntaş, E. (2014). Utilisation of MDF waste for wood plastic composites production. SDU Faculty of Forestry Journal, 15, 65-71. http://dx.doi.org/10.18182/tjf.64025.

36 Altuntaş, E., Yılmaz, E., & Salan, T. (2017). Investigation of the effect of high-fibrous filling material on the mechanical properties of wood plastic composites. Turkish Journal of Forestry, 18(3), 258-263. http://dx.doi.org/10.18182/tjf.308969.

37 Narlıoğlu, N., Salan, T., Çetin, N. S., & Alma, M. H. (2018). Evaluation of furniture industry wastes in polymer composite production. Furniture and Wooden Material Research Journal, 1(2), 78-85. http://dx.doi.org/10.33725/mamad.492418.

38 Fiore, V., Botta, L., Scaffaro, R., Valenza, A., & Pirrotta, A. (2014). PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology, 105, 110-117. http://dx.doi.org/10.1016/j.compscitech.2014.10.005.

39 Tobón, A. E. D., Chaparro, W. A. A., & Rivera, W. G. (2014). Improvement of properties of tension in WPC of LDPE: HIPS/natural fiber through crosslinking with DCP. Polímeros: Ciência e Tecnolofia, 24(3), 291-299. http://dx.doi.org/10.4322/polimeros.2014.026.

40 Bouafif, H., Koubaa, A., Perré, P., & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites. Part A, Applied Science and Manufacturing, 40(12), 1975-1981. http://dx.doi.org/10.1016/j.compositesa.2009.06.003.

41 Rao, D. K. (2015). Tensile, compressive and flexural behaviour with characterization of hybrid bio-composite reinforced with walnut shell particles and coconut fibres. In International Conference On Advanced And Agile Manufacturing Systems - ICAM-2015 (pp. 310-314). India: Kamla Nehru Institute of Technology.

42 Pekgözlü, A. K., Gülsoy, S. K., & Ayçiçek, Y. (2017). Effect of stem height on the fiber morphology and chemical composition of European Black Pine (Pinus nigra Arnold.). Journal of Bartin Faculty of Forestry, 19(2), 74-81. http://dx.doi.org/10.24011/barofd.342069.

43 Kırcı, H., & Ateş, S. (2002). Anadolu karaçamı (Pinus nigra subsp. pallasiana) odunlarının asli hücre çeperi bileşenlerinin belirlenmesi ve kağıt hamuru üretimine uygunluğunun incelenmesi. In II Ulusal Karadeniz Ormancılık Kongresi (pp. 67-71). Türkiye: Karadeniz Technical University.

44 Kılıç, A., Sarıusta, S. E., & Hafızoğlu, H. (2010). Chemical structure of compression wood of Pinus sylvestris, P. nigra and P. brutia. Journal of Bartin Faculty of Forestry, 12(18), 33-39. Retrieved in 2023, Jan 30, from https://dergipark.org.tr/en/download/article-file/300014

45 Ali, E. S., & Ahmad, S. (2012). Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay. Composites. Part B, Engineering, 43(7), 2813-2816. http://dx.doi.org/10.1016/j.compositesb.2012.04.043.

46 Demirbas, A. (2006). Effect of temperature on pyrolysis products from four nut shells. Journal of Analytical and Applied Pyrolysis, 76(1-2), 285-289. http://dx.doi.org/10.1016/j.jaap.2005.12.012.

47 Pirayesh, H., Khazaeian, A., & Tabarsa, T. (2012). (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites. Part B, Engineering, 43(8), 3276-3280. http://dx.doi.org/10.1016/j.compositesb.2012.02.016.

64f722dda9539552f0289342 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections