Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Welding parameters process study of non-metallic expansion joints polymeric composite

Marcos Dorigão Manfrinato; Eduardo de Campos Leite; Rafael Roberto Pavani; Henrique Boschetti Pereira; Lucas Camargo Soares Carvalho da Silva; Luciana Sgarbi Rossino

Downloads: 2
Views: 132


Polymeric composite materials, presenting a practical solution for sealing non-metallic expansion joints under extreme conditions such as high temperatures and harsh chemical and physical abrasion, were investigated in this scientific study to discern the impact of welding parameters on their degradation and properties. The study entailed the bonding of polymeric composite blankets through hot plate pressing with a PTFE film, encompassing variations in temperature, duration, and load application. The findings elucidated that lower temperatures and shorter processing times failed to achieve optimal blanket adhesion, while higher temperatures led to material degradation, subsequently diminishing the mechanical strength of the welded joint. In contrast, extended processing times and the application of load during welding demonstrated a positive correlation, enhancing the mechanical strength of the joint by ameliorating interfacial adhesion. This research underscores the critical significance of carefully selecting welding parameters to ensure the peak performance and durability of polymeric composite structures.



polymeric composite, hot plate welding, composite, seal blanket


1 Senior do Brasil Ltda. (2021). Junta de expansão não metálica. Araçariguama. Retrieved in 2023, September 12, from http://www.juniorflex.com.br/juniorflex/wp-content/uploads/2018/12/junta_de_expansao_nao_metalica.pdf

2 CORETECH. (2017). Darlyn 1100. Saint-Gobain Performance Plastics Corporation.

3 Figueiredo, A. B.-H. S., Carvalho, D. B., Aguilera, L. S., Melo, G. B. M., & Biasi, R. S. (2019). Response to ballistic impact of alumina-aramid-UHMWPE composites. In Anais do 73° Congresso Anual da ABM (pp. 491-499). São Paulo: Associação Brasileira de Metalurgia, Materiais e Mineração (ABM). http://dx.doi.org/10.5151/1516-392X-31399.

4 Wise, R. J. (1999). Thermal welding of polymers. Cambridge: Woodhead Publishing.

5 Stokes, V. K. (1989). Joining methods for plastics and plastic composites: an overview. Polymer Engineering and Science, 29(19), 1310-1324. http://dx.doi.org/10.1002/pen.760291903.

6 Grewell, D., & Benatar, A. (2007). Welding of plastics: fundamentals and new developments. International Polymer Processing, 22(1), 43-60. http://dx.doi.org/10.3139/217.0051.

7 Ezekoye, O. A., Lowman, C. D., Fahey, M. T., & Hulme-Lowe, A. G. (1998). Polymer weld strength predictions using a thermal and polymer chain diffusion analysis. Polymer Engineering and Science, 38(6), 976-991. http://dx.doi.org/10.1002/pen.10266.

8 Teotia, M., & Soni, R. K. (2018). Applications of finite element modelling in failure analysis of laminated glass composites: a review. Engineering Failure Analysis, 94, 412-437. http://dx.doi.org/10.1016/j.engfailanal.2018.08.016.

9 Alderliesten, R. C. (2013). Critical review on the assessment of fatigue and fracture in composite materials and structures. Engineering Failure Analysis, 35, 370-379. http://dx.doi.org/10.1016/j.engfailanal.2013.03.022.

10 Zimmermann, N., & Wang, P. H. (2020). A review of failure modes and fracture analysis of aircraft composite materials. Engineering Failure Analysis, 115, 104692. http://dx.doi.org/10.1016/j.engfailanal.2020.104692.

11 Barbosa, L. C. M., Souza, S. D. B., Botelho, E. C., Cândido, G. M., & Rezende, M. C. (2019). Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Engineering Failure Analysis, 102, 60-68. http://dx.doi.org/10.1016/j.engfailanal.2019.04.032.

12 Javaid, U., Ling, C., & Cardiff, P. (2020). Mechanical performance of carbon-glass hybrid composite joints in quasi-static tension and tension-tension fatigue. Engineering Failure Analysis, 116, 104730. http://dx.doi.org/10.1016/j.engfailanal.2020.104730.

13 Du, Y., Ma, Y., Wang, Z., He, Y., & Wang, Z. (2021). Assessment of tensile behavior and failure mechanism in the two integrated composite joints. Engineering Failure Analysis, 129, 105628. http://dx.doi.org/10.1016/j.engfailanal.2021.105628.

14 Hu, J., Mi, S., Yang, Z., Wang, C., Yang, Y., & Tian, W. (2022). An experimental investigation on bearing behavior and failure mechanism of bolted composite interference-fit joints under thermal effects. Engineering Failure Analysis, 131, 105830. http://dx.doi.org/10.1016/j.engfailanal.2021.105830.

15 American Society for Testing and Materials – ASTM. (2016). ASTM D412-16: standard test methods for vulcanized rubber and thermoplastic elastomers: tension. West Conshohocken: ASTM International.

16 Damdar, S. (2013, 1 december). Preventing failure of elastomeric expansion joints in FGD systems. POWER Magazine, Houston. Retrieved in 2023, September 12, from https://www.powermag.com/preventing-failure-of-elastomeric-expansion-joints-in-fgd-systems/

17 Suwanpakpraek, K., Patamaprohm, B., & Chaikittiratana, A. (2019). Study of adhesive bonded joint failure in composite-metal joining. IOP Conference Series. Materials Science and Engineering, 501, 012023. http://dx.doi.org/10.1088/1757-899X/501/1/012023.

18 Bi, K., Rui, Z., Xue, L., & Yang, J. (2021). Failure analysis and improvement of a non-metallic engineering part in an interference fit assembly process. Journal of Advanced Manufacturing Science and Technology, 1(1), 2020002. http://dx.doi.org/10.51393/j.jamst.2020002.

19 Pugmire, D. L., Wetteland, C. J., Duncan, W. S., Lakis, R. E., & Schwartz, D. S. (2009). Cross-linking of polytetrafluoroethylene during room-temperature irradiation. Polymer Degradation & Stability, 94(9), 1533-1541. http://dx.doi.org/10.1016/j.polymdegradstab.2009.04.024.

20 De Paoli, M.-A. (2009). Degradação e estabilização de Polímeros. São Paulo: Artiliber.

21 Sikorska, W., Zieba, M., Musiol, M., Kowalczuk, M., Janeczek, H., Chaber, P., Masiuchok, O., Demchenko, V., Talanyuk, V., Iurzhenko, M., Puskas, J. E., & Adamus, G. (2020). Forensic engineering of advanced polymeric materials-part VII: degradation of biopolymer welded joints. Polymers, 12(5), 1167. http://dx.doi.org/10.3390/polym12051167. PMid:32438761.

22 Wang, H., Wen, Y., Peng, H., Zheng, C., Li, Y., Wang, S., Sun, S., Xie, X., & Zhou, X. (2018). Grafting polytetrafluoroethylene micropowder via in situ electron beam irradiation-induced polymerization. Polymers, 10(5), 503. http://dx.doi.org/10.3390/polym10050503. PMid:30966537.

23 Wang, S., Li, J., Suo, J., & Luo, T. (2010). Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment. Applied Surface Science, 256(7), 2293-2298. http://dx.doi.org/10.1016/j.apsusc.2009.10.055.

24 Piwowarczyk, J., Jedrzejewski, R., Moszyński, D., Kwiatkowski, K., Niemczyk, A., & Baranowska, J. (2019). XPS and FTIR studies of polytetrafluoroethylene thin films obtained by physical methods. Polymers, 11(10), 1629. http://dx.doi.org/10.3390/polym11101629. PMid:31600899.

25 Sun, L.-L., Zhang, Z.-G., & Zhong, W.-H. (2011). Fluorination deposition on carbon nanofibers by PTFE decomposition as a facile method to enhance dispersion and interaction in PVDF composites. Journal of Materials Chemistry, 21(4), 944-950. http://dx.doi.org/10.1039/C0JM03260C.

26 Oshima, A., Ikeda, S., Katoh, E., & Tabata, Y. (2001). Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene. Radiation Physics and Chemistry, 62(1), 39-45. http://dx.doi.org/10.1016/S0969-806X(01)00420-0.

27 Shulga, Y. M., Vasilets, V. N., Kiryukhin, D. P., Voylov, D. N., & Sokolov, A. P. (2015). Polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material: synthesis and characterization. RSC Advances, 5(13), 9865-9874. http://dx.doi.org/10.1039/C4RA09074H.

660c451fa9539579595ba6d3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections