Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220112
Polímeros: Ciência e Tecnologia
Original Article

Active antimicrobial extruded films for mozzarella cheese from poly (butylene adipate co-terephthalate) (PBAT) and orange oil

Michelle Félix de Andrade; Ivo Diego de Lima Silva; Viviane Fonseca Caetano; Gisely Alves da Silva; Luiz Emílio Pessoa Timeni de Moraes Filho; Yêda Medeiros Bastos de Almeida; Glória Maria Vinhas

Downloads: 0
Views: 560

Abstract

The use of natural antimicrobial additives, such as orange essential oil (OO), can be a promising possibility to increase food shelf life with the aid of active packaging. This study aimed to develop an active packaging using orange oil and PBAT - poly (butylene adipate co- terephthalate) to store mozzarella cheese produced by a fine film extruder with 5, 10, and 15% OO (w/w). In the results, D-limonene was oil’s main constituent with antimicrobial activity against E. aerogenes, E. coli, and S. aureus. The addition of the oil did not alter the thermal stability of the film. The water vapor permeability increased with increasing oil concentration. All films presented high strength. However, films with higher OO concentrations favored the degradation process, as observed in the activation energy. The active packaging added with 15% OO (PBAT15) was efficient, reducing microbial growth up to 6 days of storage of mozzarella cheese.

 

 

Keywords

antimicrobial, orange oil, PBAT, active packaging

References

1 Siracusa, V., & Lotti, N. (2019). Intelligent packaging to improve shelf life. In C. M. Galanakis (Ed.), Food quality and shelf life (pp. 261-279). UK: Academic Press. http://dx.doi.org/10.1016/B978-0-12-817190-5.00008-2

2 Khumkomgool, A., Saneluksana, T., & Harnkarnsujarit, N. (2020). Active meat packaging from thermoplastic cassava starch containing sappan and cinnamon herbal extracts via LLDPE blown-film extrusion. Food Packaging and Shelf Life, 26, 100557. http://dx.doi.org/10.1016/j.fpsl.2020.100557.

3 Gaglio, R., Botta, L., Garofalo, G., Miceli, A., Settanni, L., & Lopresti, F. (2021). Carvacrol activated biopolymeric foam: an effective packaging system to control the development of spoilage and pathogenic bacteria on sliced pumpkin and melon. Food Packaging and Shelf Life, 28, 100633. http://dx.doi.org/10.1016/j.fpsl.2021.100633.

4 Costa, R. C., Daitx, T. S., Mauler, R. S., Silva, N. M., Miotto, M., Crespo, J. S., & Carli, L. N. (2020). Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packaging and Shelf Life, 26, 100602. http://dx.doi.org/10.1016/j.fpsl.2020.100602.

5 Razola-Díaz, M. D., Guerra-Hernández, E. J., García-Villanova, B., & Verardo, V. (2021). Recent developments in extraction and encapsulation techniques of orange essential oil. Food Chemistry, 354, 129575. http://dx.doi.org/10.1016/j.foodchem.2021.129575. PMid:33761335.

6 Campos, S. S., Oliveira, A., Moreira, T. F. M., Silva, T. B. V., Silva, M. V., Pinto, A. J., Bilck, A. P., Gonçalves, O. H., Fernandes, I. P., Barreiro, M.-F., Yamashita, F., Valderrama, P., Shirai, M. Y., & Leimann, F. B. (2019). TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packaging and Shelf Life, 22, 100424. http://dx.doi.org/10.1016/j.fpsl.2019.100424.

7 Shankar, S., & Rhim, J.-W. (2016). Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. Lebensmittel-Wissenschaft + Technologie, 72, 149-156. http://dx.doi.org/10.1016/j.lwt.2016.04.054.

8 Nibir, Y. M., Sumit, A. F., Akhand, A. A., Ahsan, N., & Hossain, M. S. (2017). Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 7(4), 352-357. http://dx.doi.org/10.1016/j.apjtb.2017.01.005.

9 Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. http://dx.doi.org/10.1016/j.polymertesting.2013.03.016.

10 Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), 287-298. http://dx.doi.org/10.1177/875608799701300405.

11 Dias, M. V., Medeiros, H. S., Soares, N. F. F., Melo, N. R., Borges, S. V., Carneiro, J. D. S., & Pereira, J. M. T. A. K. (2013). Development of low-density polyethylene films with lemon aroma. Lebensmittel-Wissenschaft + Technologie, 50(1), 167-171. http://dx.doi.org/10.1016/j.lwt.2012.06.005.

12 Petrov, O. V., Lang, J., & Vogel, M. (2021). Exploring the potential of PCA-based quantitation of NMR signals in T1 relaxometry. Journal of Magnetic Resonance (San Diego, Calif.), 326, 106965. http://dx.doi.org/10.1016/j.jmr.2021.106965. PMid:33774383.

13 Chivrac, F., Kadlecová, Z., Pollet, E., & Avérous, L. (2006). Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. Journal of Polymers and the Environment, 14(4), 393-401. http://dx.doi.org/10.1007/s10924-006-0033-4.

14 American Society for Testing and Materials - ASTM. (2010). ASTM D882-10: standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.

15 Dannenberg, G. S., Funck, G. D., Cruxen, C. E. S., Marques, J. L., Silva, W. P., & Fiorentini, A. M. (2017). Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: potential for application as active packaging for sliced cheese. Lebensmittel-Wissenschaft + Technologie, 81, 314-318. http://dx.doi.org/10.1016/j.lwt.2017.04.002.

16 Alehosseini, E., Jafari, S. M., & Tabarestani, H. S. (2021). Production of D-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chemistry, 354, 129591. http://dx.doi.org/10.1016/j.foodchem.2021.129591. PMid:33756315.

17 Vieira, A. J., Beserra, F. P., Souza, M. C., Totti, B. M., & Rozza, A. L. (2018). Limonene: aroma of innovation in health and disease. Chemico-Biological Interactions, 283, 97-106. http://dx.doi.org/10.1016/j.cbi.2018.02.007. PMid:29427589.

18 Clinical and Laboratory Standards Institute - CLSI. (2018). M02 - Performance Standards for Antimicrobial Disk Susceptibility Tests. USA: CLSI.

19 Greay, S. J., & Hammer, K. A. (2015). Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochemistry Reviews, 14(1), 1-6. http://dx.doi.org/10.1007/s11101-011-9212-6.

20 Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2010). Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level. Journal of Food Engineering, 100(1), 85-92. http://dx.doi.org/10.1016/j.jfoodeng.2010.03.031.

21 Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. http://dx.doi.org/10.1016/j.jfoodeng.2011.02.005.

22 Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1-7. http://dx.doi.org/10.1016/j.fpsl.2018.01.006.

23 Mallardo, S., De Vito, V., Malinconico, M., Volpe, M. G., Santagata, G., & Di Lorenzo, M. L. (2016). Poly (butylene succinate)-based composites containing b -cyclodextrin / D -limonene inclusion complex. European Polymer Journal, 79, 82-96. http://dx.doi.org/10.1016/j.eurpolymj.2016.04.024.

24 Kijchavengkul, T., Auras, R., Rubino, M., Alvarado, E., Montero, J. R. C., & Rosales, J. M. (2010). Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polymer Degradation & Stability, 95(2), 99-107. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.048.

25 Shahlari, M., & Lee, S. (2012). Mechanical and morphological properties of poly (butylene adipate-co-terephthalate) and Poly (lactic acid) blended with organically modified silicate layers. Polymer Engineering and Science, 52(7), 1420-1428. http://dx.doi.org/10.1002/pen.23082.

26 Göksen, G., Fabra, M. J., Pérez-Cataluña, A., Ekiz, H. I., Sanchez, G., & López-Rubio, A. (2021). Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packaging and Shelf Life, 27, 100613. http://dx.doi.org/10.1016/j.fpsl.2020.100613.

27 Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation & Stability, 97(10), 1898-1914. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028.

28 Gao, S., Zhai, X., Wang, W., Zhang, R., Hou, H., & Lim, L. (2022). Material properties and antimicrobial activities of starch/PBAT composite films incorporated with ε-polylysine hydrochloride prepared by extrusion blowing. Food Packaging and Shelf Life, 32, 100831. http://dx.doi.org/10.1016/j.fpsl.2022.100831.

29 Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable ediblefilm made from salep glucomannan. Carbohydrate Polymers, 104, 50-58. http://dx.doi.org/10.1016/j.carbpol.2014.01.003. PMid:24607159.

30 Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. http://dx.doi.org/10.1016/j.tifs.2015.12.001.

31 Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9-16. http://dx.doi.org/10.1016/j.foodhyd.2011.03.015.

32 Oliveira, V. M., Ortiz, A. V., Del Mastro, N. L., & Moura, E. A. B. (2009). The influence of electron-beam irradiation on some mechanical properties of commercial multilayer flexible packaging materials. Radiation Physics and Chemistry, 78(7-8), 553-555. http://dx.doi.org/10.1016/j.radphyschem.2009.03.041.

33 Sung, S., Sin, L. T., Tee, T., Bee, S., & Rahmat, A. R. (2014). Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innovative Food Science & Emerging Technologies, 26, 406-414. http://dx.doi.org/10.1016/j.ifset.2014.05.009.

34 Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889-896. http://dx.doi.org/10.1016/j.fm.2010.05.012. PMid:20688230.

35 Otero, V., Becerril, R., Santos, J. A., Rodríguez-Calleja, J. M., Nerín, C., & García-López, M.-L. (2014). Evaluation of two antimicrobial packaging fi lms against Escherichia coli O157: H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control, 42, 296-302. http://dx.doi.org/10.1016/j.foodcont.2014.02.022.
 

64f7224aa9539551b1338f04 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections