Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Sustainable composites of eco-friendly polyethylene reinforced with eggshells and bio-calcium carbonate

Kássia Peçanha Vieira; Alexandra Augusta Reichert; Gabriel Monteiro Cholant; Dielen Marin; Cesar Augusto Gonçalves Beatrice; Amanda Dantas de Oliveira

Downloads: 3
Views: 166


This work aimed to obtain and analyze composite materials made from green polyethylene and calcium carbonate extracted from chicken eggshells. The shells were collected and prepared for later extraction of calcium carbonate. With the X-ray diffraction analysis it was possible to confirm that both the in natura reinforcement and the calcined one, have the same polymorph mineral (calcite). With regard to thermal behavior, compounds with in natura reinforcement showed greater mass loss due to the moisture contained in them. The results showed a significant increase in Young’s moduli of the composites compared to the pure polymer. The scanning electron microscopy showed good dispersion and adhesion between the reinforcement materials and matrix. In view of the results, eggshells have the potential to be used as fillers, where greater rigidity is required. Since these materials come from a waste material, with low cost, their use becomes even more viable.




biopolymers, calcium carbonate, composites, eggshells, polyethylene


1 Braskem. (2021, May 9). Retrieved in 2023, August 3, from http://plasticoverde.braskem.com.br/site.aspx/PE-Verde-Produtos-e-Inovacao

2 Mores, G. V., Finocchio, C. P. S., Barichello, R., & Pedrozo, E. A. (2018). Sustainability and innovation in the Brazilian supply chain of green plastic. Journal of Cleaner Production, 177, 12-18. http://dx.doi.org/10.1016/j.jclepro.2017.12.138.

3 Siracusa, V., & Blanco, I. (2020). Bio-polyethylene (bio-PE), bio-polypropylene (bio-PP) and bio-poly(ethylene terephthalate) (bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. http://dx.doi.org/10.3390/polym12081641. PMid:32718011.

4 Associação Brasileira de Proteína Animal - ABPA. (2022). Relatório anual ABPA 2022. São Paulo: ABPA. Retrieved in 2023, August 3, from https://abpa-br.org/wp-content/uploads/2023/01/abpa-relatorio-anual-2022.pdf

5 Dennis, J. E., Carrino, D. A., Yamashita, K., & Caplan, A. I. (2000). Monoclonal antibodies to mineralized matrix molecules of the avian eggshell. Matrix Biology, 19(7), 683-692. http://dx.doi.org/10.1016/S0945-053X(00)00118-9. PMid:11102757.

6 Nys, Y., Gautron, J., Garcia-Ruiz, J. M., & Hincke, M. T. (2004). Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol, 3(6-7), 549-562. http://dx.doi.org/10.1016/j.crpv.2004.08.002.

7 Hafez, I., Amini, E., & Tajvidi, M. (2020). The synergy between cellulose nanofibrils and calcium carbonate in a hybrid composite system. Cellulose, 27(7), 3773-3787. http://dx.doi.org/10.1007/s10570-020-03032-w.

8 Charde, S. J., Sonawane, S. S., Sonawane, S. H., & Navin, S. (2018). Influence of functionalized calcium carbonate nanofillers on the properties of melt-extruded polycarbonate composites. Chemical Engineering Communications, 205(4), 492-505. http://dx.doi.org/10.1080/00986445.2017.1404459.

9 Olesik, P., Godzierz, M., & Kozioł, M. (2019). Preliminary characterization of novel LDPE-based wear-resistant composite suitable for FDM 3D printing. Materials, 12(16), 2520. http://dx.doi.org/10.3390/ma12162520. PMid:31398801.

10 Ivanović, M., Knežević, S., Mirković, M. M., Kljajević, L., Bučevac, D., Pavlović, V. B., & Nenadović, M. (2023). Structural characterization of geopolymers with the addition of eggshell ash. Sustainability, 15(6), 5419. http://dx.doi.org/10.3390/su15065419.

11 Callister, W. D. Jr., & Rethwisch, D. G. (2016). Ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC Editora.

12 Nawar, A., Ali, M., Khoja, A. H., Waqas, A., Anwar, M., & Mahmood, M. (2021). Enhanced CO2 capture using organic acid structure modified waste eggshell derived CaO sorbent. Journal of Environmental Chemical Engineering, 9(1), 104871. http://dx.doi.org/10.1016/j.jece.2020.104871.

13 Kareem, R. A., & Naji, G. A.-H. (2022). Natural preparation of rice husk-derived silica and eggshell-derived calcium carbonate composite as a coating material for dental implant. Journal of Baghdad College of Dentistry, 34(1), 36-43. http://dx.doi.org/10.26477/jbcd.v34i1.3090.

14 Rezk, R. A., Abdel-Salam, Z., Ghany, N. A. A., Abdelkreem, M., & Abdel-Harith, M. (2022). LIBS and pXRF validation for the removal of Pb by bio-CaCO3 nanoparticles from contaminated water. SN Applied Sciences, 4(5), 151. http://dx.doi.org/10.1007/s42452-022-05014-y.

15 Hossain, M. S., Jahan, S. A., & Ahmed, S. (2023). Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca(OH)2. Results in Chemistry, 5, 100822. http://dx.doi.org/10.1016/j.rechem.2023.100822.

16 Nath, D., Jangid, K., Susaniya, A., Kumar, R., & Vaish, R. (2021). Eggshell derived CaO-Portland cement antibacterial composites. Composites Part C: Open Access, 5, 100123. http://dx.doi.org/10.1016/j.jcomc.2021.100123.

17 Razali, N., Jumadi, N., Jalani, A. Y., Kamarulzaman, N. Z., & Pa’ee, K. F. (2022). Thermal decomposition of calcium carbonate in chicken eggshells: study on temperature and contact time. The Malaysian Journal of Analytical Sciences, 26(2), 347-359, Retrieved in 2023, August 3, from https://mjas.analis.com.my/mjas/v26_n2/pdf/Nadia_26_2_14.pdf

18 Behera, S., Gautam, R. K., Mohan, S., & Tiwari, A. (2023). Mechanical, water absorption and tribological properties of epoxy composites filled with waste eggshell and fish scale particles. Progress in Rubber, Plastics and Recycling Technology. Online. http://dx.doi.org/10.1177/14777606231175921.

19 Oladele, I. O., Makinde-Isola, B. A., Adediran, A. A., Oladejo, M. O., Owa, A. F., & Olayanju, T. M. A. (2020). Mechanical and wear behaviour of pulverised poultry eggshell/sisal fiber hybrid reinforced epoxy composites. Materials Research Express, 7(4), 045304. http://dx.doi.org/10.1088/2053-1591/ab8585.

20 Sosiati, H., Utomo, C. T., Setiono, I., & Budiyantoro, C. (2020). Effect of CaCO3 particles size and content on impact strenght of Kenaf/CaCO3/epoxy resin hybrid composites. Indonesian Journal of Applied Physics, 10(1), 24-31. http://dx.doi.org/10.13057/ijap.v10i01.37748.

21 Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Awogbemi, O. (2020). Studies on the mechanical and absorption properties of achatina fulica snail and eggshells reinforced composite materials. Composite Structures, 239, 112043. http://dx.doi.org/10.1016/j.compstruct.2020.112043.

22 Mustapha, K., Ayinla, R., Ottan, A. S., & Owoseni, T. A. (2020). Mechanical properties of calcium carbonate/eggshell particle filled polypropylene Composites. MRS Advances, 5(54-55), 2783-2792. http://dx.doi.org/10.1557/adv.2020.323.

23 Williams, A. O., Amoke, A., & Ayo, M. D. (2022). Assessment of the mechanical properties of Nr/SBR blend reinforced with egg shell and carbon black. International Journal of Innovations in Engineering Research and Technology, 9(6), 53-63.

24 Brząkalski, D., Przekop, R. E., Dobrosielska, M., Sztorch, B., Marciniak, P., & Marciniec, B. (2020). Highly bulky spherosilicates as functional additives for polyethylene processing: influence on mechanical and thermal properties. Polymer Composites, 41(8), 3389-3402. http://dx.doi.org/10.1002/pc.25628.

25 Liew, F. K., Hamdan, S., Rahman, R. M., Rusop, M., & Khan, A. (2020). Thermo-mechanical properties of jute/bamboo/polyethylene hybrid composites: the combined effects of silane coupling agent and copolymer. Polymer Composites, 41(11), 4830-4841. http://dx.doi.org/10.1002/pc.25755.

26 Wu, H., Xiao, D., Lu, J., Li, T., Jiao, C., Li, S., Lu, P., & Zhang, Z. (2020). Preparation and properties of biocomposite films based on poly(vinyl alcohol) incorporated with eggshell powder as a biological filler. Journal of Polymers and the Environment, 28(7), 2020-2028. http://dx.doi.org/10.1007/s10924-020-01747-2.

27 Hajinezhad, S., Razavizadeh, B. M., & Niazmand, R. (2020). Study of antimicrobial and physicochemical properties of LDPE/propolis extruded films. Polymer Bulletin, 77(8), 4335-4353. http://dx.doi.org/10.1007/s00289-019-02965-y.

28 Duque, J. V. F., Martins, M. F., Debenest, G., & Orlando, M. T. D. (2020). The influence of the recycling stress history on LDPE waste pyrolysis. Polymer Testing, 86, 106460. http://dx.doi.org/10.1016/j.polymertesting.2020.106460.

29 Saber, D., Abdelnaby, A. H., & Abdelhaleim, A. M. (2023). Fabrication of ecofriendly composites using low-density polyethylene and sugarcane bagasse: characteristics’ degradation. Textile Research Journal, 93(15-16), 3666-3679. http://dx.doi.org/10.1177/00405175231161281.

30 Santos, M. S., Montagna, L. S., Rezende, M. C., & Passador, F. R. (2019). A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications. Journal of Applied Polymer Science, 136(11), 47204. http://dx.doi.org/10.1002/app.47204.

31 Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11), 1746. http://dx.doi.org/10.3390/ma12111746. PMid:31146397.

32 Saikrishnan, S., Jubinville, D., Tzoganakis, C., & Mekonnen, T. H. (2020). Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polymer Degradation & Stability, 182, 109390. http://dx.doi.org/10.1016/j.polymdegradstab.2020.109390.

33 Alkaron, W. A., Hamad, S. F., & Sabri, M. M. (2023). Studying the fabrication and characterization of polymer composites reinforced with waste eggshell powder. Advances in Polymer Technology, 2023, 7640478. http://dx.doi.org/10.1155/2023/7640478.

34 Zhan, J., Li, J., Wang, G., Guan, Y., Zhao, G., Lin, J., Naceur, H., & Coutellier, D. (2021). Review on the performances, foaming and injection molding simulation of natural fiber composites. Polymer Composites, 42(3), 1305-1324. http://dx.doi.org/10.1002/pc.25902.

35 Yu, G., Cheng, Y., & Zhang, X. (2019). The dielectric properties improvement of cable insulation layer by different morphology nanoparticles doping into LDPE. Coatings, 9(3), 204. http://dx.doi.org/10.3390/coatings9030204.

657b0909a953955d1476fe64 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections