Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synergistic electrochemical method to prepare graphene oxide/polyaniline nanocomposite

Eric Luiz Pereira; Anderson Gama; Maria Elena Leyva González; Adhimar Flávio Oliveira

Downloads: 1
Views: 137


Graphene oxide (GO) was electropolymerized with polyaniline (PANI) during graphite exfoliation in 0.1 M H2SO4 electrolyte and 0.1 M aniline monomer solution. Characterization techniques, including Infrared Absorption Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), UV-vis spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and cyclic voltammetry, were utilized. XRD analysis confirmed GO multilayer exfoliation from the graphite anode, while UV-vis and FTIR techniques confirmed PANI electropolymerization. SEM images revealed PANI distributed between GO multilayers with a nanoneedle morphology. Cyclic voltammetry in 1 M H2SO4 demonstrated that the GO/PANI composite achieved a specific capacitance of 117.440 Fg-1, in contrast to GO's 1.243 Fg-1, both at a scan rate of 1 mVs-1. This enhancement is attributed to the improved electrical conductivity from PANI and graphene oxide. These results highlight the potential of the GO/PANI composite for high-performance supercapacitors and energy storage systems.


graphene oxide, electrochemical exfoliation, polyaniline, electropolymerization, nanocomposites


1 Wang, H., Hao, Q., Yang, X., Lu, L., & Wang, X. (2010). Effect of graphene oxide on the properties of its composite with polyaniline. ACS Applied Materials & Interfaces, 2(3), 821-828. http://dx.doi.org/10.1021/am900815k. PMid:20356287.

2 Chatterjee, D. P., & Nandi, A. K. (2021). A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(29), 15880-15918. http://dx.doi.org/10.1039/D1TA02505H.

3 Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., Liu, K., & Jiang, S. (2020). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200. http://dx.doi.org/10.1007/s10853-020-05157-6.

4 Veerendra, A. S., Mohamed, M. R., Leung, P. K., & Shah, A. A. (2020). Hybrid power management for fuel cell/supercapacitor series hybrid electric vehicle. International Journal of Green Energy, 18(2), 128-143. http://dx.doi.org/10.1080/15435075.2020.1831511.

5 Pallavolu, M. R., Nallapureddy, J., Nallapureddy, R. R., Neelima, G., Yedluri, A. K., Mandal, T. K., Pejjai, B., & Joo, S. W. (2021). Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds, 886, 161234. http://dx.doi.org/10.1016/j.jallcom.2021.161234.

6 Yin, X., Zhang, J., Yang, L., Xiao, W., Zhou, L., Tang, Y., & Yang, W. (2022). Carbon electrodes with ionophobic characteristics in organic electrolyte for high-performance electric double-layer capacitors. Science China Materials, 65(2), 383-390. http://dx.doi.org/10.1007/s40843-021-1751-x.

7 Gupta, V., & Miura, N. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4), 1721-1726. http://dx.doi.org/10.1016/j.electacta.2006.01.074.

8 Kang, M., Jo, Y., Mun, C., Yeom, J., Park, J. S., Jung, H. S., Kim, D.-H., Park, S.-G., & Yoo, S. M. (2021). Nanoconfined 3D redox capacitor-based electrochemical sensor for ultrasensitive monitoring of metabolites in bacterial communication. Sensors and Actuators. B, Chemical, 345, 130427. http://dx.doi.org/10.1016/j.snb.2021.130427.

9 Hussain, I., Lamiel, C., Ahmad, M., Chen, Y., Shuang, S., Javed, M. S., Yang, Y., & Zhang, K. (2021). High entropy alloys as electrode material for supercapacitors: a review. Journal of Energy Storage, 44, 103405. http://dx.doi.org/10.1016/j.est.2021.103405.

10 Bao, L. Q., Nguyen, T.-H., Fei, H., Sapurina, I., Ngwabebhoh, F. A., Bubulinca, C., Munster, L., Bergerová, E. D., Lengalova, A., Jiang, H., Dao, T. T., Bugarova, N., Omastova, M., Kazantseva, N. E., & Saha, P. (2021). Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta, 367, 137563. http://dx.doi.org/10.1016/j.electacta.2020.137563.

11 Snook, G. A., & Chen, G. Z. (2008). The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 612(1), 140-146. http://dx.doi.org/10.1016/j.jelechem.2007.08.024.

12 Ferraris, J. P., Eissa, M. M., Brotherston, I. D., & Loveday, D. C. (1998). Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications. Chemistry of Materials, 10(11), 3528-3535. http://dx.doi.org/10.1021/cm9803105.

13 Heme, H. N., Alif, M. S. N., Rahat, S. S. M., & Shuchi, S. B. (2021). Recent progress in polyaniline composites for high capacity energy storage: A review. Journal of Energy Storage, 42, 103018. http://dx.doi.org/10.1016/j.est.2021.103018.

14 Xu, J., Wang, K., Zu, S.-Z., Han, B.-H., & Wei, Z. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 4(9), 5019-5026. http://dx.doi.org/10.1021/nn1006539. PMid:20795728.

15 Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7(11), 845-854. http://dx.doi.org/10.1038/nmat2297. PMid:18956000.

16 Chen, H., Li, W., He, M., Chang, X., Zheng, X., & Ren, Z. (2021). Vertically oriented carbon nanotube as a stable frame to support the Co0. 85Se nanoparticles for high performance supercapacitor electrode. Journal of Alloys and Compounds, 855(Pt 2), 157506. http://dx.doi.org/10.1016/j.jallcom.2020.157506.

17 Szabó, T., Tombácz, E., Illés, E., & Dékány, I. (2006). Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 44(3), 537-545. http://dx.doi.org/10.1016/j.carbon.2005.08.005.

18 Li, Z. J., Yang, B. C., Zhang, S. R., & Zhao, C. M. (2012). Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Applied Surface Science, 258(8), 3726-3731. http://dx.doi.org/10.1016/j.apsusc.2011.12.015.

19 Yusuf, B., Hashim, M. R., & Halim, M. M. (2022). Efficiency improvement of molybdenum oxide doped with graphene oxide thin films solar cells processed by spray pyrolysis technique. Physica B, Condensed Matter, 625, 413532. http://dx.doi.org/10.1016/j.physb.2021.413532.

20 Song, J., Wang, X., & Chang, C.-T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, 276143, 1-6. http://dx.doi.org/10.1155/2014/276143.

21 Kamata, K., Yonehara, K., Sumida, Y., Yamaguchi, K., Hikichi, S., & Mizuno, N. (2003). Efficient epoxidation of olefins with≥ 99% selectivity and use of hydrogen peroxide. Science, 300(5621), 964-966. http://dx.doi.org/10.1126/science.1083176. PMid:12738860.

22 Sarangapani, S., Tilak, B. V., & Chen, C.-P. (1996). Materials for electrochemical capacitors: theoretical and experimental constraints. Journal of the Electrochemical Society, 143(11), 3791-3799. http://dx.doi.org/10.1149/1.1837291.

23 Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 132(23), 8180-8186. http://dx.doi.org/10.1021/ja102777p. PMid:20527938.

24 Agarwal, V., & Zetterlund, P. B. (2021). Strategies for reduction of graphene oxide–A comprehensive review. Chemical Engineering Journal, 405, 127018. http://dx.doi.org/10.1016/j.cej.2020.127018.

25 Qin, Q., He, F., & Zhang, W. (2016). One-step electrochemical polymerization of polyaniline flexible counter electrode doped by graphene. Journal of Nanomaterials, 2016, 1076158. http://dx.doi.org/10.1155/2016/1076158.

26 Yan, X., Chen, J., Yang, J., Xue, Q., & Miele, P. (2010). Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide− polyaniline and graphene− polyaniline hybrid papers. ACS Applied Materials & Interfaces, 2(9), 2521-2529. http://dx.doi.org/10.1021/am100293r. PMid:20735069.

27 Liu, Y., Ma, Y., Guang, S., Ke, F., & Xu, H. (2015). Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon, 83, 79-89. http://dx.doi.org/10.1016/j.carbon.2014.11.026.

28 Mooss, V. A., & Athawale, A. A. (2016). Polyaniline–graphene oxide nanocomposites: influence of nonconducting graphene oxide on the conductivity and oxidation‐reduction mechanism of polyaniline. Journal of Polymer Science. Part A, Polymer Chemistry, 54(23), 3778-3786. http://dx.doi.org/10.1002/pola.28277.

29 Katore, M. S., Nemade, K. R., Yawale, S. S., & Yawale, S. P. (2016). Photovoltaic application of architecture ITO/graphene oxide–polyaniline/aluminum. Journal of Materials Science Materials in Electronics, 27(9), 9828-9835. http://dx.doi.org/10.1007/s10854-016-5049-5.

30 Chang, T.-W., Lin, L.-Y., Peng, P.-W., Zhang, Y. X., & Huang, Y.-Y. (2018). Enhanced electrocapacitive performance for the supercapacitor with tube-like polyaniline and graphene oxide composites. Electrochimica Acta, 259, 348-354. http://dx.doi.org/10.1016/j.electacta.2017.10.195.

31 Liao, C.-Y., Chien, H.-H., Hao, Y.-C., Chen, C.-W., Yu, I.-S., & Chen, J.-Z. (2018). Low-temperature-annealed reduced graphene oxide–polyaniline nanocomposites for supercapacitor applications. Journal of Electronic Materials, 47(7), 3861-3868. http://dx.doi.org/10.1007/s11664-018-6260-3.

32 Beyazay, T., Oztuna, F. E. S., & Unal, U. (2019). Self-standing reduced graphene oxide papers electrodeposited with manganese oxide nanostructures as electrodes for electrochemical capacitors. Electrochimica Acta, 296, 916-924. http://dx.doi.org/10.1016/j.electacta.2018.11.033.

33 Shab-Balcerzak, E. (Ed.) (2011). Electropolymerization. Slovakia: Intechopen. http://dx.doi.org/10.5772/1119.

34 Perumal, S., Atchudan, R., Edison, T. N. J. I., Shim, J.-J., & Lee, Y. R. (2021). Exfoliation and noncovalent functionalization of graphene surface with poly-N-vinyl-2-pyrrolidone by in situ polymerization. Molecules (Basel, Switzerland), 26(6), 1534. http://dx.doi.org/10.3390/molecules26061534. PMid:33799693.

35 Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The Journal of Physical Chemistry Letters, 9(23), 6814-6817. http://dx.doi.org/10.1021/acs.jpclett.8b02892. PMid:30990726.

36 Manivel, P., Dhakshnamoorthy, M., Balamurugan, A., Ponpandian, N., Mangalaraj, D., & Viswanathan, C. (2013). Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances, 3(34), 14428-14437. http://dx.doi.org/10.1039/c3ra42322k.

37 Nguyen, V. H., Tang, L., & Shim, J.-J. (2013). Electrochemical property of graphene oxide/polyaniline composite prepared by in situ interfacial polymerization. Colloid & Polymer Science, 291(9), 2237-2243. http://dx.doi.org/10.1007/s00396-013-2940-y.

38 Hu, H., Wang, X., Wang, J., Wan, L., Liu, F., Zheng, H., Chen, R., & Xu, C. (2010). Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters, 484(4-6), 247-253. http://dx.doi.org/10.1016/j.cplett.2009.11.024.

39 Toledo, R. P., Huanca, D. R., Oliveira, A. F., Santos Filho, S. G., & Salcedo, W. J. (2020). Electrical and optical characterizations of erbium doped MPS/PANI heterojunctions. Applied Surface Science, 529, 146994. http://dx.doi.org/10.1016/j.apsusc.2020.146994.

40 Zhou, Y., Yen, C. H., Fu, S., Yang, G., Zhu, C., Du, D., Wo, P. C., Cheng, X., Yang, J., Waic, C. M., & Lin, Y. (2015). One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction. Green Chemistry, 17(6), 3552-3560. http://dx.doi.org/10.1039/C5GC00617A.

41 Jibrael, R. I., & Mohammed, M. F. A. (2016). Production of graphene powder by electrochemical exfoliation of graphite electrodes immersed in aqueous solution. Optik (Stuttgart), 127(16), 6384-6389. http://dx.doi.org/10.1016/j.ijleo.2016.04.101.

42 Wu, J., Zhang, Q., Wang, J., Huang, X., & Bai, H. (2018). A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy & Environmental Science, 11(5), 1280-1286. http://dx.doi.org/10.1039/C8EE00078F.

43 Vargas, L. R., Poli, A. K. S., Dutra, R. C. L., Souza, C. B., Baldan, M. R., & Gonçalves, E. S. (2017). Formation of composite polyaniline and graphene oxide by physical mixture method. Journal of Aerospace Technology and Management, 9(1), 29-38. http://dx.doi.org/10.5028/jatm.v9i1.697.

44 Zhang, Y., Liu, J., Zhang, Y., Liu, J., & Duan, J. (2017). Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Advances, 7(85), 54031-54038. http://dx.doi.org/10.1039/C7RA08794B.

45 Medeiros, M. F. X. P., Leyva, M. E., Queiroz, A. A. A., & Maron, L. B. (2020). Electropolymerization of polyaniline nanowires on poly(2-hydroxyethyl methacrylate) coated Platinum electrode. Polímeros: Ciência e Tecnologia, 30(1), e2020008. http://dx.doi.org/10.1590/0104-1428.02020.

46 Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., & Wang, S. (2009). Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources, 190(2), 578-586. http://dx.doi.org/10.1016/j.jpowsour.2009.01.052.

657b0de8a953956156141d13 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections