Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220099
Polímeros: Ciência e Tecnologia
Original Article

Cold plasma copolymer with antimicrobial activity deposited on three different substrates

Erick Osvaldo Martínez Ruiz; Xi Rao; Abril Fonseca García; Carlos Gallardo Vega; Carmen Natividad Alvarado Canche; José Abraham Gonzáles López; Antonio Serguei Ledezma Pérez; Miriam Desiree Davila Medina; Claudia Gabriela Cuellar Gaona; Rosa Idalia Narro Céspedes; Gustavo Soria Arguello; María Guadalupe Neira Velázquez

Downloads: 1
Views: 570

Abstract

A good strategy to prevent early deposition of bacteria that can form biofilms is the application of antimicrobial coatings to existing surfaces, however this field has been little explored and coatings are often non uniform in thickness. A homogeneous film of R-Carvone-Octadiene (ppCop) was deposited on different substrates (coverslip, minced coverslip and fabric) by cold plasma copolymerization to study the influence of the substrate on antimicrobial activity and show clues about the influence of octadiene on copolymerization. The ppCop showed better antimicrobial activity results on the substrate with higher effective contact area, highlighting the influence of this variable on antimicrobial activity. The ppCop deposited on minced coverslip showed an inhibition of E. coli and S. aureus bacteria by 48.69 ±0.08% and 49.31 ±0.58% respectively, with an average roughness of 14.1±0.02 nm and a static water contact angle of 79± 0.4°. The ppCop showed no cytotoxicity to the human cell line.

 

Keywords

antimicrobial, biofilm, octadiene, plasma, R-Carvone

References

1 Carvalho, C. C. C. R., & Fonseca, M. M. R. (2007). Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiology Ecology, 61(3), 406-413. http://dx.doi.org/10.1111/j.1574-6941.2007.00352.x. PMid:17617221.

2 Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends in Microbiology, 13(1), 34-40. http://dx.doi.org/10.1016/j.tim.2004.11.010. PMid:15639630.

3 Bahrami, A., Delshadi, R., & Jafari, S. M. (2020). Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends in Food Science & Technology, 99, 217-228. http://dx.doi.org/10.1016/j.tifs.2020.03.008.

4 Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7(2), 277-281. http://dx.doi.org/10.3201/eid0702.010226. PMid:11294723.

5 Sunil, B. R., Kiran, A. S. K., & Ramakrishna, S. (2022). Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications. Current Opinion in Biomedical Engineering, 23, 100398. http://dx.doi.org/10.1016/j.cobme.2022.100398.

6 Bouzaheur, A., Bouchoucha, A., Larbi, K. S., & Zaater, S. (2022). Experimental and DFT studies of a novel Schiff base sulfonamide derivative ligand and its palladium (II) and platinum (IV) complexes: antimicrobial activity, cytotoxicity, and molecular docking study. Journal of Molecular Structure, 1261, 132811. http://dx.doi.org/10.1016/j.molstruc.2022.132811.

7 Xu, Q., He, P., Wang, J., Chen, H., Lv, F., Liu, L., Wang, S., & Yoon, J. (2019). Antimicrobial activity of a conjugated polymer with cationic backbone. Dyes and Pigments, 160, 519-523. http://dx.doi.org/10.1016/j.dyepig.2018.08.049.

8 Aslam, M., Abdullah, A. Z., & Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1-16. http://dx.doi.org/10.1016/j.jiec.2021.04.010.

9 Knetsch, M. L. W., & Koole, L. H. (2011). New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers, 3(1), 340-366. http://dx.doi.org/10.3390/polym3010340.

10 Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31(13), 3674-3683. http://dx.doi.org/10.1016/j.biomaterials.2010.01.071. PMid:20163851.

11 Hasan, J., Crawford, R. J., & Ivanova, E. P. (2013). Antibacterial surfaces: the quest for a new generation of biomaterials. Trends in Biotechnology, 31(5), 295-304. http://dx.doi.org/10.1016/j.tibtech.2013.01.017. PMid:23434154.

12 Hegstad, K., Langsrud, S., Lunestad, B. T., Scheie, A. A., Sunde, M., & Yazdankhah, S. P. (2010). Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microbial Drug Resistance (Larchmont, N.Y.), 16(2), 91-104. http://dx.doi.org/10.1089/mdr.2009.0120. PMid:20370507.

13 Kwok, C. S., Horbett, T. A., & Ratner, B. D. (1999). Design of infection-resistant antibiotic-releasing polymers. II. Controlled release of antibiotics through a plasma-deposited thin film barrier. Journal of Controlled Release, 62(3), 301-311. http://dx.doi.org/10.1016/S0168-3659(99)00105-4. PMid:10528068.

14 Ma, Y., Chen, M., Jones, J. E., Ritts, A. C., Yu, Q., & Sun, H. (2012). Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrobial Agents and Chemotherapy, 56(11), 5923-5937. http://dx.doi.org/10.1128/AAC.01739-12. PMid:22964248.

15 Michl, T. D., Coad, B. R., Doran, M., Hüsler, A., Valentin, J. D. P., Vasilev, K., & Griesser, H. J. (2014). Plasma polymerization of 1,1,1-trichloroethane yields a coating with robust antibacterial surface properties. RSC Advances, 4(52), 27604-27606. http://dx.doi.org/10.1039/C4RA01892C.

16 Chan, Y. W., Siow, K. S., Ng, P. Y., Gires, U., & Majlis, B. Y. (2016). Plasma polymerized carvone as an antibacterial and biocompatible coating. Materials Science and Engineering C, 68, 861-871. http://dx.doi.org/10.1016/j.msec.2016.07.040. PMid:27524089.

17 Pegalajar-Jurado, A., Easton, C. D., Styan, K. E., & McArthur, S. L. (2014). Antibacterial activity studies of plasma polymerised cineole films. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2(31), 4993-5002. http://dx.doi.org/10.1039/C4TB00633J. PMid:32261832.

18 Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering R Reports, 36(5-6), 143-206. http://dx.doi.org/10.1016/S0927-796X(02)00004-9.

19 Aggarwal, K. K., Khanuja, S. P. S., Ahmad, A., Kumar, T. R. S., Gupta, V. K., & Kumar, S. (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils ofMentha spicata andAnethum sowa. Flavour and Fragrance Journal, 17(1), 59-63. http://dx.doi.org/10.1002/ffj.1040.

20 Carvalho, C. C. C. R., & Fonseca, M. M. R. (2006). Carvone: why and how should one bother to produce this terpene. Food Chemistry, 95(3), 413-422. http://dx.doi.org/10.1016/j.foodchem.2005.01.003.

21 Castiglione, K., Fu, Y., Polte, I., Leupold, S., Meo, A., & Weuster-Botz, D. (2017). Asymmetric whole-cell bioreduction of (R)-carvone by recombinant Escherichia coli with in situ substrate supply and product removal. Biochemical Engineering Journal, 117(Pt A), 102-111. http://dx.doi.org/10.1016/j.bej.2016.10.002.

22 An, T., Deng, X., Liu, S., Wang, S., Ju, J., & Dou, C. (2018). Growth and roughness dependent wetting properties of CeO2 films prepared by glancing angle deposition. Ceramics International, 44(8), 9742-9745. http://dx.doi.org/10.1016/j.ceramint.2018.02.206.

23 Yasuda, H. K. (1985). Plasma polymerization. USA: Academic Press.

24 Japan Standard Association - JSA. JIS Z 2801:2000: Antimicrobial products—Test for antimicrobial activity and efficiency. Japan: Japan Standard Association; 2000.

25 International Organization for Standardization – ISO. ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Switzerland: ISO; 2009.

26 Chan, Y. W., Chen, T. F., Siow, K., Majlis, B. Y., & Yeoh, T. S. (2015). TRIZ technique to produce stable plasma modified surfaces with high density of reactive chemical functionalities. In 2015 IEEE Conference on Sustainable Utilization And Development In Engineering and Technology (CSUDET) (pp. 1-6). Selangor, Malaysia: IEEE. http://dx.doi.org/10.1109/CSUDET.2015.7446218

27 Nambafu, G. S., Kim, N., & Kim, J. (2022). Hydrophobic coatings prepared using various dipodal silane-functionalized polymer precursors. Applied Surface Science Advances, 7, 100207. http://dx.doi.org/10.1016/j.apsadv.2021.100207.

28 Ong, Y.-L., Razatos, A., Georgiou, G., & Sharma, M. M. (1999). Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir, 15(8), 2719-2725. http://dx.doi.org/10.1021/la981104e.

29 Siow, K. S., Britcher, L., Kumar, S., & Griesser, H. J. (2014). Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma Processes and Polymers, 11(2), 133-141. http://dx.doi.org/10.1002/ppap.201300115.

30 Odian, G. (2004). Principles of polymerization. USA: John Wiley & Sons.. http://dx.doi.org/10.1002/047147875X.

31 Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The Handbook of infrared and raman characteristic frequencies of organic molecules. Boston: Academic Press.

32 Nath, S. D., & Bhuiyan, A. H. (2023). Surface morphology and optical properties of thin films of plasma polymerized methyl acrylate. Optical Materials, 136, 113474. http://dx.doi.org/10.1016/j.optmat.2023.113474.

33 Dey, A., Mete, S., Banerjee, S., Haldar, U., Rajasekhar, T., Srikanth, K., Faust, R., & De, P. (2023). Crystallinity of side-chain fatty acid containing block copolymers with polyisobutylene segment. European Polymer Journal, 187, 111879. http://dx.doi.org/10.1016/j.eurpolymj.2023.111879.

34 Gupta, S., Puttaiahgowda, Y. M., Parambil, A. M., & Kulal, A. (2023). Fabrication of crosslinked piperazine polymer coating: synthesis, characterization and its activity towards microorganisms. Journal of Molecular Structure, 1274(Pt 2), 134522. http://dx.doi.org/10.1016/j.molstruc.2022.134522.

35 ASTM International – ASTM. ASTM F756-17 - Standard Practice for Assessment of Hemolytic Properties of Materials. USA: ASTM International; 2017.
 

65ce0306a953953d2a6af465 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections