Cold plasma copolymer with antimicrobial activity deposited on three different substrates
Erick Osvaldo Martínez Ruiz; Xi Rao; Abril Fonseca García; Carlos Gallardo Vega; Carmen Natividad Alvarado Canche; José Abraham Gonzáles López; Antonio Serguei Ledezma Pérez; Miriam Desiree Davila Medina; Claudia Gabriela Cuellar Gaona; Rosa Idalia Narro Céspedes; Gustavo Soria Arguello; María Guadalupe Neira Velázquez
Abstract
Keywords
References
1 Carvalho, C. C. C. R., & Fonseca, M. M. R. (2007). Preventing biofilm formation: promoting cell separation with terpenes.
2 Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Survival strategies of infectious biofilms.
3 Bahrami, A., Delshadi, R., & Jafari, S. M. (2020). Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies.
4 Donlan, R. M. (2001). Biofilms and device-associated infections.
5 Sunil, B. R., Kiran, A. S. K., & Ramakrishna, S. (2022). Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications.
6 Bouzaheur, A., Bouchoucha, A., Larbi, K. S., & Zaater, S. (2022). Experimental and DFT studies of a novel Schiff base sulfonamide derivative ligand and its palladium (II) and platinum (IV) complexes: antimicrobial activity, cytotoxicity, and molecular docking study.
7 Xu, Q., He, P., Wang, J., Chen, H., Lv, F., Liu, L., Wang, S., & Yoon, J. (2019). Antimicrobial activity of a conjugated polymer with cationic backbone.
8 Aslam, M., Abdullah, A. Z., & Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications.
9 Knetsch, M. L. W., & Koole, L. H. (2011). New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles.
10 Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium.
11 Hasan, J., Crawford, R. J., & Ivanova, E. P. (2013). Antibacterial surfaces: the quest for a new generation of biomaterials.
12 Hegstad, K., Langsrud, S., Lunestad, B. T., Scheie, A. A., Sunde, M., & Yazdankhah, S. P. (2010). Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health?
13 Kwok, C. S., Horbett, T. A., & Ratner, B. D. (1999). Design of infection-resistant antibiotic-releasing polymers. II. Controlled release of antibiotics through a plasma-deposited thin film barrier.
14 Ma, Y., Chen, M., Jones, J. E., Ritts, A. C., Yu, Q., & Sun, H. (2012). Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating.
15 Michl, T. D., Coad, B. R., Doran, M., Hüsler, A., Valentin, J. D. P., Vasilev, K., & Griesser, H. J. (2014). Plasma polymerization of 1,1,1-trichloroethane yields a coating with robust antibacterial surface properties.
16 Chan, Y. W., Siow, K. S., Ng, P. Y., Gires, U., & Majlis, B. Y. (2016). Plasma polymerized carvone as an antibacterial and biocompatible coating.
17 Pegalajar-Jurado, A., Easton, C. D., Styan, K. E., & McArthur, S. L. (2014). Antibacterial activity studies of plasma polymerised cineole films.
18 Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modification of biomaterials.
19 Aggarwal, K. K., Khanuja, S. P. S., Ahmad, A., Kumar, T. R. S., Gupta, V. K., & Kumar, S. (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils ofMentha spicata andAnethum sowa.
20 Carvalho, C. C. C. R., & Fonseca, M. M. R. (2006). Carvone: why and how should one bother to produce this terpene.
21 Castiglione, K., Fu, Y., Polte, I., Leupold, S., Meo, A., & Weuster-Botz, D. (2017). Asymmetric whole-cell bioreduction of (R)-carvone by recombinant Escherichia coli with in situ substrate supply and product removal.
22 An, T., Deng, X., Liu, S., Wang, S., Ju, J., & Dou, C. (2018). Growth and roughness dependent wetting properties of CeO2 films prepared by glancing angle deposition.
23 Yasuda, H. K. (1985).
24 Japan Standard Association - JSA. JIS Z 2801:2000: Antimicrobial products—Test for antimicrobial activity and efficiency. Japan: Japan Standard Association; 2000.
25 International Organization for Standardization – ISO. ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Switzerland: ISO; 2009.
26 Chan, Y. W., Chen, T. F., Siow, K., Majlis, B. Y., & Yeoh, T. S. (2015). TRIZ technique to produce stable plasma modified surfaces with high density of reactive chemical functionalities. In
27 Nambafu, G. S., Kim, N., & Kim, J. (2022). Hydrophobic coatings prepared using various dipodal silane-functionalized polymer precursors.
28 Ong, Y.-L., Razatos, A., Georgiou, G., & Sharma, M. M. (1999). Adhesion forces between E. coli bacteria and biomaterial surfaces.
29 Siow, K. S., Britcher, L., Kumar, S., & Griesser, H. J. (2014). Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus.
30 Odian, G. (2004).
31 Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991).
32 Nath, S. D., & Bhuiyan, A. H. (2023). Surface morphology and optical properties of thin films of plasma polymerized methyl acrylate.
33 Dey, A., Mete, S., Banerjee, S., Haldar, U., Rajasekhar, T., Srikanth, K., Faust, R., & De, P. (2023). Crystallinity of side-chain fatty acid containing block copolymers with polyisobutylene segment.
34 Gupta, S., Puttaiahgowda, Y. M., Parambil, A. M., & Kulal, A. (2023). Fabrication of crosslinked piperazine polymer coating: synthesis, characterization and its activity towards microorganisms.
35 ASTM International – ASTM. ASTM F756-17 - Standard Practice for Assessment of Hemolytic Properties of Materials. USA: ASTM International; 2017.