Obtaining and characterization of bioplastics based on potato starch, aloe, and graphene
Mercedes Puca Pacheco; Oscar Rafael Tinoco Gómez; Gonzalo Canché Escamilla; Santiago Duarte Aranda; María Guadalupe Neira Velázquez
Abstract
Keywords
References
1 Mohanty, A. M., Misra, M., & Drzal, L. T. (Eds.). (2005).
2 Kartik, A., Akhil, D., Lakshmi, D., Gopinath, K. P., Arun, J., Sivaramakrishnan, R., & Pugazhendhi, A. (2021). A critical review on production of biopolymers from algae biomass and their applications.
3 Khalid, M. Y., Arif, Z. U., Ahmed, W., & Arshad, H. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials.
4 Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: a narrative review.
5 Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications.
6 Barati, Z., Latif, S., & Müller, J. (2019). Enzymatic hydrolysis of cassava peels as potential pre-treatment for peeling of cassava tubers.
7 Morales, A., Labidi, J., Gullón, P., & Astray, G. (2021). Synthesis of advanced biobased green materials from renewable biopolymers.
8 Gorak, P., Postawa, P., Trusilewicz, L. N., & Kalwik, A. (2021). Cementitious eco-composites and their physicochemical/mechanical properties in Portland cement-based mortars with a lightweight aggregate manufactured by upcycling waste by products.
9 Berger, F., Gauvin, F., & Brouwers, H. J. H. (2020). The recycling potential of wood waste into wood-wool/cement composite.
10 Marczak, D., Lejcuś, K., Grzybowska-Pietras, J., Biniaś, W., Lejcuś, I., & Misiewicz, J. (2020). Biodegradation of sustainable nonwovens used in water absorbing geocomposites supporting plants vegetation.
11 Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2019). Insights into the biodegradation of PHA/wood composites: micro- and macroscopic changes.
12 Arif, Z. U., Khalid, M. Y., Sheikh, M. F., Zolfagharian, A., & Bodaghi, M. (2022). Biopolymeric sustainable materials and their emerging applications.
13 Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application.
14 Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: challenges and opportunities.
15 Lefsih, K., Iboukhoulef, L., Petit, E., Benouatas, H., Pierre, G., & Delattre, C. (2018). Anti-Inflammatory and Antioxidant Effect of a D-galactose-rich Polysaccharide Extracted From Aloe vera Leaves.
16 Kakroodi, A. R., Cheng, S., Sain, M., & Asiri, A. (2014). Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind.
17 Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene.
18 Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene.
19 Lonkar, S. P., Deshmukh, Y. S., & Abdala, A. A. (2015). Recent advances in chemical modifications of graphene.
20 Zhang, J., Zhao, F., Zhang, Z., Chen, N., & Qu, L. T. (2013). Dimension-tailored functional graphene structures for energy conversion and storage.
21 Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as a new nanocarriers for drug delivery applications.
22 Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene based biosensors.
23 Du, J. H., & Cheng, H.-M. (2012). The fabrication, properties, and uses of graphene/polymer composites.
24 Avellán, A., Díaz, D., Mendoza, A., Zambrano, M., Zamora, Y., & Riera, M. A. (2019). Obtaining bioplastic from corn starch (
25 Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites.
26 Montgomery, D. C. (2008).
27 Gontard, N., Guilbert, S., & Cuq, J.-L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film.
28 Association of Official Analytical Chemists - AOAC. (2005).
29 Hoover, R., & Ratnayake, W. S. (2001). Determination of total amylose content of starch.
30. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO. Elaboración de la yuca. Italy: Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO.
31. Reynolds, T., editor (2004). Aloes: The Genus Aloe. Medicinal and aromatic plants-industrial profiles. USA: CRC Press LLC.
32 Hamman, J. H. (2008). Composition and applications of Aloe vera leaf gel.
33 Nejatzadeh-Barandozi, F., & Enferadi, S. T. (2012). FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment.
34 Gentilini, R., Bozzini, S., Munarin, F., Petrini, P., Visai, L., & Tanzi, M. C. (2014). Pectins from Aloe Vera: extraction and production of gels for regenerative medicine.
35 Rodríguez-González, V.-M., Femenia, A., González-Laredo, R. F., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Candelas-Cadillo, M. G., Ramírez-Baca, P., Simal, S., & Rosselló, C. (2011). Effects of pasteurización on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller.
36 Jithendra, P., Rajam, A. M., Kalaivani, T., Mandal, A. B., & Rose, C. (2013). Preparation and characterization of Aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.
37 Puca Pacheco, M., Tacuri Calanchi, E., Pantoja Cadillo, A., Neira Velázquez, M. G., & Canché Escamilla, G. (2017). Synthesis of polymer nanocomposites with graphene and their mechanical characterization.
38 Olsen, E. D. (1990).
39 Goheen, S. M., & Wool, R. P. (1991). Degradation of polyethylene-starch blends in soil.
40 Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability.
41 Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterization of a series of chemically modified potato starches.
42 Nan, H. Y., Ni, Z. H., Wang, J., Zafar, Z., Shi, Z. X., & Wang, Y. Y. (2013). The thermal stability of graphene in air investigated by Raman spectroscopy.
43 Ohno, Y., Maehashi, K., Yamashiro, Y., & Matsumoto, K. (2009). Electrolyte gated graphene field-effect transistors for detecting ph and protein adsorption.
44 Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on the behavior of amylose and amylopectin films.
45 Meneses, J., Corrales, C. M., & Valencia, M. (2013). Synthesis and characterization of a biodegradable polymer from cassava starch.
46 Puca Pacheco, M., Aguilar Vega, M., Canché Escamilla, G., & Neira Velázquez, M. G. (2022). Evaluation of thermal properties and permeability of bioplastic films based on starch, aloe vera and graphene.