Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220084
Polímeros: Ciência e Tecnologia
Original Article

Obtaining and characterization of bioplastics based on potato starch, aloe, and graphene

Mercedes Puca Pacheco; Oscar Rafael Tinoco Gómez; Gonzalo Canché Escamilla; Santiago Duarte Aranda; María Guadalupe Neira Velázquez

Downloads: 2
Views: 651

Abstract

Currently there is a great trend towards cleaner, more sustainable and green production, based on a circular economy. Therefore, in the present work the study of the effect of the concentration of potato starch, aloe vera and graphene on the mechanical properties, water vapor permeability, biodegradability and structural properties of bioplastics is reported. These bioplastics could replace conventional synthetic plastics that currently produce high environmental pollution. According to the statistical analysis of a 2˄3 factorial design, a biodegradable bioplastic with improved mechanical properties was obtained, with a high maximum stress of 2.49 ± 0.28 MPa at high concentration levels of starch, aloe vera and graphene (10% w/w starch, 24% w/w of aloe and 0.045% w/w of graphene). A minimum value of permeance and permeability to water vapor of 5.35 kg/h.kPa.m2 and 0.001839 kg/h.kPa.m, respectively, was found at a graphene concentration of 0.005%; aloe concentration, 24%; and starch concentration, 10%.

 

 

Keywords

graphene, bioplastic, biodegradable, mechanical properties, starch

References

1 Mohanty, A. M., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. USA: CRC Press. http://dx.doi.org/10.1201/9780203508206.

2 Kartik, A., Akhil, D., Lakshmi, D., Gopinath, K. P., Arun, J., Sivaramakrishnan, R., & Pugazhendhi, A. (2021). A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 329, 124868. http://dx.doi.org/10.1016/j.biortech.2021.124868. PMid:33707076.

3 Khalid, M. Y., Arif, Z. U., Ahmed, W., & Arshad, H. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies, 31, e00382. http://dx.doi.org/10.1016/j.susmat.2021.e00382.

4 Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: a narrative review. Food Packaging and Shelf Life, 33, 100892. http://dx.doi.org/10.1016/j.fpsl.2022.100892.

5 Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454. http://dx.doi.org/10.1016/j.foodhyd.2020.106454.

6 Barati, Z., Latif, S., & Müller, J. (2019). Enzymatic hydrolysis of cassava peels as potential pre-treatment for peeling of cassava tubers. Biocatalysis and Agricultural Biotechnology, 20, 101247. http://dx.doi.org/10.1016/j.bcab.2019.101247.

7 Morales, A., Labidi, J., Gullón, P., & Astray, G. (2021). Synthesis of advanced biobased green materials from renewable biopolymers. Current Opinion in Green and Sustainable Chemistry, 29, 100436. http://dx.doi.org/10.1016/j.cogsc.2020.100436.

8 Gorak, P., Postawa, P., Trusilewicz, L. N., & Kalwik, A. (2021). Cementitious eco-composites and their physicochemical/mechanical properties in Portland cement-based mortars with a lightweight aggregate manufactured by upcycling waste by products. Journal of Cleaner Production, 289, 125156. http://dx.doi.org/10.1016/j.jclepro.2020.125156.

9 Berger, F., Gauvin, F., & Brouwers, H. J. H. (2020). The recycling potential of wood waste into wood-wool/cement composite. Construction & Building Materials, 260, 119786. http://dx.doi.org/10.1016/j.conbuildmat.2020.119786.

10 Marczak, D., Lejcuś, K., Grzybowska-Pietras, J., Biniaś, W., Lejcuś, I., & Misiewicz, J. (2020). Biodegradation of sustainable nonwovens used in water absorbing geocomposites supporting plants vegetation. Sustainable Materials and Technologies, 26, e00235. http://dx.doi.org/10.1016/j.susmat.2020.e00235.

11 Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2019). Insights into the biodegradation of PHA/wood composites: micro- and macroscopic changes. Sustainable Materials and Technologies, 21, e00099. http://dx.doi.org/10.1016/j.susmat.2019.e00099.

12 Arif, Z. U., Khalid, M. Y., Sheikh, M. F., Zolfagharian, A., & Bodaghi, M. (2022). Biopolymeric sustainable materials and their emerging applications. Journal of Environmental Chemical Engineering, 10(4), 108159. http://dx.doi.org/10.1016/j.jece.2022.108159.

13 Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. http://dx.doi.org/10.1016/j.tifs.2021.04.016.

14 Sobhan, A., Muthukumarappan, K., & Wei, L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: challenges and opportunities. Food Packaging and Shelf Life, 30, 100745. http://dx.doi.org/10.1016/j.fpsl.2021.100745.

15 Lefsih, K., Iboukhoulef, L., Petit, E., Benouatas, H., Pierre, G., & Delattre, C. (2018). Anti-Inflammatory and Antioxidant Effect of a D-galactose-rich Polysaccharide Extracted From Aloe vera Leaves. Advances in Applied Chemistry and Biochemistry, 1(1), 18-26. http://dx.doi.org/10.33513/ACBC/1801-03.

16 Kakroodi, A. R., Cheng, S., Sain, M., & Asiri, A. (2014). Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. Journal of Nanomaterials, 903498, 1-7. http://dx.doi.org/10.1155/2014/903498.

17 Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. http://dx.doi.org/10.1038/nmat1849. PMid:17330084.

18 Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907. http://dx.doi.org/10.1021/nl0731872. PMid:18284217.

19 Lonkar, S. P., Deshmukh, Y. S., & Abdala, A. A. (2015). Recent advances in chemical modifications of graphene. Nano Research, 8(4), 1039-1074. http://dx.doi.org/10.1007/s12274-014-0622-9.

20 Zhang, J., Zhao, F., Zhang, Z., Chen, N., & Qu, L. T. (2013). Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale, 5(8), 3112-3126. http://dx.doi.org/10.1039/c3nr00011g. PMid:23467313.

21 Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as a new nanocarriers for drug delivery applications. Acta Biomaterialia, 9(12), 9243-9257. http://dx.doi.org/10.1016/j.actbio.2013.08.016. PMid:23958782.

22 Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene based biosensors. Biosensors & Bioelectronics, 26(12), 4637-4648. http://dx.doi.org/10.1016/j.bios.2011.05.039. PMid:21683572.

23 Du, J. H., & Cheng, H.-M. (2012). The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 213(10-11), 1060-1077. http://dx.doi.org/10.1002/macp.201200029.

24 Avellán, A., Díaz, D., Mendoza, A., Zambrano, M., Zamora, Y., & Riera, M. A. (2019). Obtaining bioplastic from corn starch (Zea mays L.). Revista Colón Ciencias, Tecnología y Negocios, 7(1), 1-11. Retrieved in 2022, September 4, from http://portal.amelica.org/ameli/jatsRepo/215/215974004/215974004.pdf

25 Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327-331. http://dx.doi.org/10.1038/nnano.2008.96. PMid:18654541.

26 Montgomery, D. C. (2008). Diseño y análisis de experimentos. México: Limusa Wiley.

27 Gontard, N., Guilbert, S., & Cuq, J.-L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206-211. http://dx.doi.org/10.1111/j.1365-2621.1993.tb03246.x.

28 Association of Official Analytical Chemists - AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists. USA: AOAC International.

29 Hoover, R., & Ratnayake, W. S. (2001). Determination of total amylose content of starch. Current Protocols in Food Analytical Chemistry, 00(1), E2.3.1-E2.3.5. http://dx.doi.org/10.1002/0471142913.fae0203s00.

30. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO. Elaboración de la yuca. Italy: Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO.

31. Reynolds, T., editor (2004). Aloes: The Genus Aloe. Medicinal and aromatic plants-industrial profiles. USA: CRC Press LLC. http://dx.doi.org/10.1201/9780203476345.

32 Hamman, J. H. (2008). Composition and applications of Aloe vera leaf gel. Molecules, 13(8), 1599-1616. http://dx.doi.org/10.3390/molecules13081599. PMid:18794775.

33 Nejatzadeh-Barandozi, F., & Enferadi, S. T. (2012). FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment. Organic and Medicinal Chemistry Letters, 2(1), 33. http://dx.doi.org/10.1186/2191-2858-2-33. PMid:23095284.

34 Gentilini, R., Bozzini, S., Munarin, F., Petrini, P., Visai, L., & Tanzi, M. C. (2014). Pectins from Aloe Vera: extraction and production of gels for regenerative medicine. Journal of Applied Polymer Science, 131(2), n/a. http://dx.doi.org/10.1002/app.39760.

35 Rodríguez-González, V.-M., Femenia, A., González-Laredo, R. F., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Candelas-Cadillo, M. G., Ramírez-Baca, P., Simal, S., & Rosselló, C. (2011). Effects of pasteurización on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydrate Polymers, 86(4), 1675-1683. http://dx.doi.org/10.1016/j.carbpol.2011.06.084.

36 Jithendra, P., Rajam, A. M., Kalaivani, T., Mandal, A. B., & Rose, C. (2013). Preparation and characterization of Aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Applied Materials & Interfaces, 5(15), 7291-7298. http://dx.doi.org/10.1021/am401637c. PMid:23838342.

37 Puca Pacheco, M., Tacuri Calanchi, E., Pantoja Cadillo, A., Neira Velázquez, M. G., & Canché Escamilla, G. (2017). Synthesis of polymer nanocomposites with graphene and their mechanical characterization. Revista de la Sociedad Química del Perú, 83(1), 65-77. http://dx.doi.org/10.37761/rsqp.v83i1.104.

38 Olsen, E. D. (1990). Optical methods of analysis. México: Editorial Reverté.

39 Goheen, S. M., & Wool, R. P. (1991). Degradation of polyethylene-starch blends in soil. Journal of Applied Polymer Science, 42(10), 2691-2701. http://dx.doi.org/10.1002/app.1991.070421007.

40 Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science. Materials in Medicine, 14(2), 127-135. http://dx.doi.org/10.1023/A:1022015712170. PMid:15348484.

41 Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterization of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245-252. http://dx.doi.org/10.1016/S0144-8617(01)00187-4.

42 Nan, H. Y., Ni, Z. H., Wang, J., Zafar, Z., Shi, Z. X., & Wang, Y. Y. (2013). The thermal stability of graphene in air investigated by Raman spectroscopy. Journal of Raman Spectroscopy : JRS, 44(7), 1018-1021. http://dx.doi.org/10.1002/jrs.4312.

43 Ohno, Y., Maehashi, K., Yamashiro, Y., & Matsumoto, K. (2009). Electrolyte gated graphene field-effect transistors for detecting ph and protein adsorption. Nano Letters, 9(9), 3318-3322. http://dx.doi.org/10.1021/nl901596m. PMid:19637913.

44 Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on the behavior of amylose and amylopectin films. Carbohydrate Polymers, 50(4), 355-361. http://dx.doi.org/10.1016/S0144-8617(02)00042-5.

45 Meneses, J., Corrales, C. M., & Valencia, M. (2013). Synthesis and characterization of a biodegradable polymer from cassava starch. Revista EIA, 4(8), 57-67. Retrieved in 2022, September 4, from https://revistabme.eia.edu.co/index.php/reveia/article/view/185

46 Puca Pacheco, M., Aguilar Vega, M., Canché Escamilla, G., & Neira Velázquez, M. G. (2022). Evaluation of thermal properties and permeability of bioplastic films based on starch, aloe vera and graphene. Revista de la Sociedad Química del Perú, 88(1), 63-77. http://dx.doi.org/10.37761/rsqp.v88i1.376.
 

6434105ea95395509060ab62 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections