Selection of materials with entropy-topsis by considering technological properties of impregnated wood
Nadir Ersen; Hüseyin Peker; İlker Akyüz
Abstract
Keywords
References
1 Örs, Y., & Keskin, H. (2008).
2 Baysal, E. (2011). Combustion properties of Calabrian pine impregnated with aqueous solutions of commercial fertilizers.
3 Qu, H., Wu, W., Wu, H., Xie, J., & Xu, J. (2011). Study on the effects of flame retardants on the thermal decomposition of wood by TG-MS.
4 Kartal, S. N. (2006). Combined effect of boron compounds and heat treatments on wood properties: boron release and decay and termite resistance.
5 Adanur, H., Fidan, M. S., & Yaşar, Ş. Ş. (2017). The technological properties of Oriental beech (Fagus orientalis Lipsky) impregnated with boron compounds and natural materials.
6 Sen, S., Fidan, M. S., Alkan, E., & Yasar, S. S. (2018). Determination of some properties of Scotch pine (Pinus sylvestris L.) wood which is impregnated with boron compounds and quechua.
7 Wang, F., Liu, J., & Lyu, W. (2019). Effect of boron compounds on properties of Chinese fir wood treated with PMUF resin.
8 Wanishdilokratn, T., Sukjareon, S., Howpinjai, I., & Asanok, L. (2022). Enhancing leucaena leucocephala wood preservation by steeping it in boron compounds and acetic acid to protect against termites.
9 Chamber of Geological Engineers - TMMOB. (2022).
10 Lekili, M. (2022). Barite as filling.
11 Azadfallah, M. (2017). Comparative analysis of different measurement scale and normalization method performances in ELECTRE method.
12 Halicka, K. (2020). Technology selection using the TOPSIS method.
13 Sharma, A., Awasthi, A., Singh, T., Kumar, R., & Chauhan, R. (2022). Experimental investigation and optimization of potential parameters of discrete V down baffled solar thermal collector using hybrid Taguchi-TOPSIS method.
14 Singh, T. (2021). A hybrid multiple-criteria decision-making approach for selecting optimal automotive brake friction composite.
15 Singh, T. (2021). Utilization of cement bypass dust in the development of sustainable automotive brake friction composite materials.
16 Singh, T. (2021). Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach.
17 Singh, T., Pattnaik, P., Pruncu, C. I., Tiwari, A., & Fekete, G. (2020). Selection of natural fibers based brake friction composites using hybrid ELECTRE-entropy optimization technique.
18 Singh, T., Pattnaik, P., Aherwar, A., Ranakoti, L., Dogossy, G., & Lendvai, L. (2022). Optimal design of wood/rice husk-waste-filled PLA biocomposites using integrated CRITIC-MABAC-based decision-making.
19 Singh, T., Pattnaik, P., Kumar, S. R., Fekete, G., Dogossy, G., & Lendvai, L. (2022). Optimization on physicomechanical and wear properties of wood waste filled poly (lactic acid) biocomposites using integrated entropy-simple additive weighting approach.
20 Zhang, H., Gu, C.-L., Gu, L.-W., & Zhang, Y. (2011). The evaluation of tourism destination competitiveness by TOPSIS & information entropy-a case in the Yangtze River Delta of China.
21 Chen, W., Feng, D., & Chu, X. (2015). Study of poverty alleviation effects for Chinese fourteen contiguous destitute areas based on entropy method.
22 Chen, C.-H. (2020). A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS.
23 Dutta, B., Dao, S. D., Martinez, L., & Goh, M. (2021). An evolutionary strategic weight manipulation approach for multi-attribute decision making: TOPSIS method.
24 Yeh, C.-H. (2002). A problem-based selection of multi-attribute decision-making methods.
25 Turkish Standards Institution. (1976).
26 Turkish Standards Institution. (1977).
27 Turkish Standards Institution. (1976).
28 American Society for Testing and Materials - ASTM. (1976).
29 Turkish Standards Institution. (1988).
30 Turkish Standards Institution. (1983).
31 Turkish Standards Institution. (1983).
32 Turkish Standards Institution. (1983).
33 Turkish Standards Institution. (1983).
34 Shannon, C. E., & Weaver, W. (1949).
35 Lee, P. T.-W., Lin, C.-W., & Shin, S.-H. (2012). A comparative study on financial positions of shipping companies in Taiwan and Korea using entropy and grey relation analysis.
36 Hwang, C.-L., & Yoon, K. (1981).
37 Yoon, K. (1987). A reconciliation among discrete compromise solutions.
38 Hwang, C.-L., Lai, Y.-J., & Liu, T.-Y. (1993). A new approach for multiple objective decision making.
39 Tsaur, R.-C. (2011). Decision risk analysis for an interval TOPSIS method.
40 Baysal, E., Sonmez, A., Colak, M., & Toker, H. (2006). Amount of leachant and water absorption levels of wood treated with borates and water repellent.
41 Baraúna, E. E. P., Paes, J. B., Monteiro, T. C., Moulin, J. C., Ferreira, G. L., Silveira, A. G., Baldin, T., Sette, C. R. Jr., & Arantes, M. D. C. (2020). Influence of the impregnation with boron compounds on the physical properties of Eucalyptus wood.
42 LeVan, S. L., & Winandy, J. E. (1990). Effects of fire retardant treatments on wood strength: a review.
43 Keskin, H., Ertürk, N. S., ÇolakoÄŸlu, M. H., & Korkut, S. (2013). Mechanical properties of Rowan wood impregnated with various chemical materials.
44 Perçin, O., Sofuoglu, S. D., & Uzun, O. (2015). Effect of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood.
45 Tan, H., Ulusoy, H., & Peker, H. (2017). The effects of impregnation with barite (BaSO4) on the physical and mechanical properties of wood materials.
46 Kaymakci, A., & Bayram, B. Ç. (2021). Evaluation of heat treatment parameters’ effect on some physical and mechanical properties of poplar wood with multi-criteria decision making techniques.
47 Dev, S., Aherwar, A., & Patnaik, A. (2020). Material selection for automotive piston component using Entropy-VIKOR method.
48 Goswami, S. S., & Behera, D. K. (2021). Implementation of ENTROPY-ARAS decision making methodology in the selection of best engineering materials.
49 Mohite, N. T., Patil, G. V., & Kallol, A. N. (2022). The use of entropy-based GRA approach to analyze and optimize the wire electrical discharge machining process for Nitronic-30.
50 Aherwar, A., Singh, T., Singh, A., Patnaik, A., & Fekete, G. (2019). Optimum selection of novel developed implant material using hybrid entropy-PROMETHEE approach.
51 Singh, T., Goswami, C., Patnaik, A., & Lendvai, L. (2022). Optimal design of ceramic based hip implant composites using hybrid AHP-MOORA approach.
52 Khargotra, R., Kumar, R., András, K., Fekete, G., & Singh, T. (2022). Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach.