Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220067
Polímeros: Ciência e Tecnologia
Original Article

Selection of materials with entropy-topsis by considering technological properties of impregnated wood

Nadir Ersen; Hüseyin Peker; İlker Akyüz

Downloads: 1
Views: 619

Abstract

In this study, the hybrid Entropy-TOPSIS method is applied to the problem of selecting an optimal impregnation material with maximum performance requirements. Swelling, shrinkage, bending strength, modulus of elasticity, compressive strength and shock strength values were used to rank the impregnation materials. Barite, boric acid, borax and their mixture were used to impregnation material. The impregnation materials used in the study generally increased the physical and mechanical properties of the spruce specimens, except swelling. The impregnation materials reduced the swelling of the specimens. According to the entropy method, the most important factor affecting the success of the impregnation process was the modulus of elasticity. According to the TOPSIS method, the most successful impregnation material was a mixture of barite and boric acid. Moreover, the proposed method was compared with other Multi-Criteria Decision-Making (MCDM) approaches and it can be used to ranking of impregnation materials with reliable accuracy.

 

 

Keywords

TOPSIS, entropy, decision making, impregnation

References

1 Örs, Y., & Keskin, H. (2008). Technology of wood materials. Ankara: Gazi Publication Company.

2 Baysal, E. (2011). Combustion properties of Calabrian pine impregnated with aqueous solutions of commercial fertilizers. African Journal of Biotechnology, 10(82), 19255-19260.

3 Qu, H., Wu, W., Wu, H., Xie, J., & Xu, J. (2011). Study on the effects of flame retardants on the thermal decomposition of wood by TG-MS. Journal of Thermal Analysis and Calorimetry, 103(3), 935-942. http://dx.doi.org/10.1007/s10973-010-1103-3.

4 Kartal, S. N. (2006). Combined effect of boron compounds and heat treatments on wood properties: boron release and decay and termite resistance. Holzforschung, 60(4), 455-458. http://dx.doi.org/10.1515/HF.2006.072.

5 Adanur, H., Fidan, M. S., & Yaşar, Ş. Ş. (2017). The technological properties of Oriental beech (Fagus orientalis Lipsky) impregnated with boron compounds and natural materials. BioResources, 12(1), 1647-1661. http://dx.doi.org/10.15376/biores.12.1.1647-1661.

6 Sen, S., Fidan, M. S., Alkan, E., & Yasar, S. S. (2018). Determination of some properties of Scotch pine (Pinus sylvestris L.) wood which is impregnated with boron compounds and quechua. Wood Research, 63(6), 1033-1044. Retrieved in 2022, November 18, from http://www.woodresearch.sk/cms/determination-of-some-properties-of-scotch-pine-pinus-sylvestris-l-wood-which-is-impregnated-with-boron-compounds-and-quechua/

7 Wang, F., Liu, J., & Lyu, W. (2019). Effect of boron compounds on properties of Chinese fir wood treated with PMUF resin. Journal of Bioresources and Bioproducts, 4(1), 60-66. http://dx.doi.org/10.21967/jbb.v4i1.182.

8 Wanishdilokratn, T., Sukjareon, S., Howpinjai, I., & Asanok, L. (2022). Enhancing leucaena leucocephala wood preservation by steeping it in boron compounds and acetic acid to protect against termites. Wood Research, 67(2), 213-220. http://dx.doi.org/10.37763/wr.1336-4561/67.2.213220.

9 Chamber of Geological Engineers - TMMOB. (2022). Barite. Retrieved in 2022, November 18, from https://www.jmo.org.tr/resimler/ekler/ce22f3a91043be9_ek.pdf?dergi=MAV%DD%20GEZEGEN

10 Lekili, M. (2022). Barite as filling. Mining Bulletin. Retrieved in 2022, November 18, from https://www.maden.org.tr/resimler/ekler/40a99f23e896076_ek.pdf

11 Azadfallah, M. (2017). Comparative analysis of different measurement scale and normalization method performances in ELECTRE method. National Journal of System and Information Technology, 10(2), 127-138.

12 Halicka, K. (2020). Technology selection using the TOPSIS method. Foresight and STI Governance, 14(1), 85-96. http://dx.doi.org/10.17323/2500-2597.2020.1.85.96.

13 Sharma, A., Awasthi, A., Singh, T., Kumar, R., & Chauhan, R. (2022). Experimental investigation and optimization of potential parameters of discrete V down baffled solar thermal collector using hybrid Taguchi-TOPSIS method. Applied Thermal Engineering, 209, 118250. http://dx.doi.org/10.1016/j.applthermaleng.2022.118250.

14 Singh, T. (2021). A hybrid multiple-criteria decision-making approach for selecting optimal automotive brake friction composite. Material Design & Processing Communication, 3(5), e266. http://dx.doi.org/10.1002/mdp2.266.

15 Singh, T. (2021). Utilization of cement bypass dust in the development of sustainable automotive brake friction composite materials. Arabian Journal of Chemistry, 14(9), 103324. http://dx.doi.org/10.1016/j.arabjc.2021.103324.

16 Singh, T. (2021). Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach. Journal of Materials Research and Technology, 14, 81-92. http://dx.doi.org/10.1016/j.jmrt.2021.06.051.

17 Singh, T., Pattnaik, P., Pruncu, C. I., Tiwari, A., & Fekete, G. (2020). Selection of natural fibers based brake friction composites using hybrid ELECTRE-entropy optimization technique. Polymer Testing, 89, 106614-106624. http://dx.doi.org/10.1016/j.polymertesting.2020.106614.

18 Singh, T., Pattnaik, P., Aherwar, A., Ranakoti, L., Dogossy, G., & Lendvai, L. (2022). Optimal design of wood/rice husk-waste-filled PLA biocomposites using integrated CRITIC-MABAC-based decision-making. Polymers, 14(13), 2603. http://dx.doi.org/10.3390/polym14132603. PMid:35808652.

19 Singh, T., Pattnaik, P., Kumar, S. R., Fekete, G., Dogossy, G., & Lendvai, L. (2022). Optimization on physicomechanical and wear properties of wood waste filled poly (lactic acid) biocomposites using integrated entropy-simple additive weighting approach. South African Journal of Chemical Engineering, 41, 193-202. http://dx.doi.org/10.1016/j.sajce.2022.06.008.

20 Zhang, H., Gu, C.-L., Gu, L.-W., & Zhang, Y. (2011). The evaluation of tourism destination competitiveness by TOPSIS & information entropy-a case in the Yangtze River Delta of China. Tourism Management, 32(2), 443-451. http://dx.doi.org/10.1016/j.tourman.2010.02.007.

21 Chen, W., Feng, D., & Chu, X. (2015). Study of poverty alleviation effects for Chinese fourteen contiguous destitute areas based on entropy method. International Journal of Economics and Finance, 7(4), 89-98. http://dx.doi.org/10.5539/ijef.v7n4p89.

22 Chen, C.-H. (2020). A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS. Entropy, 22(2), 259-281. http://dx.doi.org/10.3390/e22020259. PMid:33286032.

23 Dutta, B., Dao, S. D., Martinez, L., & Goh, M. (2021). An evolutionary strategic weight manipulation approach for multi-attribute decision making: TOPSIS method. International Journal of Approximate Reasoning, 129, 64-83. http://dx.doi.org/10.1016/j.ijar.2020.11.004.

24 Yeh, C.-H. (2002). A problem-based selection of multi-attribute decision-making methods. International Transactions in Operational Research, 9(2), 169-181. http://dx.doi.org/10.1111/1475-3995.00348.

25 Turkish Standards Institution. (1976). TS 2474: wood-determination of ultimate strength in static bending. Ankara: Turkish Standards Institution.

26 Turkish Standards Institution. (1977). TS 2595: wood-testing in compression parallel to grain. Ankara: Turkish Standards Institution.

27 Turkish Standards Institution. (1976). TS 2477: wood-determination of impact bending strength. Ankara: Turkish Standards Institution.

28 American Society for Testing and Materials - ASTM. (1976). ASTM D 1413-76: standard test method of testing wood preservatives by laboratory soilblock cultures. West Conshohocken: ASTM.

29 Turkish Standards Institution. (1988). TS 5724: wood preservation-determination of boron, copper, chromium and arsenic in preservative formulations and in treated timber-volumetric method. Ankara: Turkish Standards Institution.

30 Turkish Standards Institution. (1983). TS 4083: wood - determination of radial and tangential shrinkage. Ankara: Turkish Standards Institution.

31 Turkish Standards Institution. (1983). TS 4084: wood- determination of radial and tangential swelling. Ankara: Turkish Standards Institution.

32 Turkish Standards Institution. (1983). TS 4085: wood - determination of volumetric shrinkage. Ankara: Turkish Standards Institution.

33 Turkish Standards Institution. (1983). TS 4086: wood- determination of volumetric swelling. Ankara: Turkish Standards Institution.

34 Shannon, C. E., & Weaver, W. (1949). The Mathematical theory of communication. Urbana: The University of Illinois Press.

35 Lee, P. T.-W., Lin, C.-W., & Shin, S.-H. (2012). A comparative study on financial positions of shipping companies in Taiwan and Korea using entropy and grey relation analysis. Expert Systems with Applications, 39(5), 5649-5657. http://dx.doi.org/10.1016/j.eswa.2011.11.052.

36 Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making methods and applications: a state-of-the-art survey. Berlin: Springer.

37 Yoon, K. (1987). A reconciliation among discrete compromise solutions. The Journal of the Operational Research Society, 38(3), 277-286. http://dx.doi.org/10.1057/jors.1987.44.

38 Hwang, C.-L., Lai, Y.-J., & Liu, T.-Y. (1993). A new approach for multiple objective decision making. Computers & Operations Research, 20(8), 889-899. http://dx.doi.org/10.1016/0305-0548(93)90109-V.

39 Tsaur, R.-C. (2011). Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218(8), 4295-4304. http://dx.doi.org/10.1016/j.amc.2011.10.001.

40 Baysal, E., Sonmez, A., Colak, M., & Toker, H. (2006). Amount of leachant and water absorption levels of wood treated with borates and water repellent. Bioresource Technology, 97(18), 2271-2279. http://dx.doi.org/10.1016/j.biortech.2005.10.044. PMid:16359861.

41 Baraúna, E. E. P., Paes, J. B., Monteiro, T. C., Moulin, J. C., Ferreira, G. L., Silveira, A. G., Baldin, T., Sette, C. R. Jr., & Arantes, M. D. C. (2020). Influence of the impregnation with boron compounds on the physical properties of Eucalyptus wood. Scientia Forestalis, 48(128), e3383. http://dx.doi.org/10.18671/scifor.v48n128.09.

42 LeVan, S. L., & Winandy, J. E. (1990). Effects of fire retardant treatments on wood strength: a review. Wood and Fiber Science, 22(1), 113-131. Retrieved in 2022, November 18, from https://wfs.swst.org/index.php/wfs/article/view/2074/2074

43 Keskin, H., Ertürk, N. S., ÇolakoÄŸlu, M. H., & Korkut, S. (2013). Mechanical properties of Rowan wood impregnated with various chemical materials. International Journal of Physical Sciences, 8(2), 73-82. http://dx.doi.org/10.5897/IJPS12.688.

44 Perçin, O., Sofuoglu, S. D., & Uzun, O. (2015). Effect of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood. BioResources, 10(3), 3963-3978. http://dx.doi.org/10.15376/biores.10.3.3963-3978.

45 Tan, H., Ulusoy, H., & Peker, H. (2017). The effects of impregnation with barite (BaSO4) on the physical and mechanical properties of wood materials. Journal of Bartin Faculty of Forestry, 19(2), 160-165. Retrieved in 2022, November 18, from https://dergipark.org.tr/tr/pub/barofd/issue/30631/346900

46 Kaymakci, A., & Bayram, B. Ç. (2021). Evaluation of heat treatment parameters’ effect on some physical and mechanical properties of poplar wood with multi-criteria decision making techniques. BioResources, 16(3), 4693-4703. http://dx.doi.org/10.15376/biores.16.3.4693-4703.

47 Dev, S., Aherwar, A., & Patnaik, A. (2020). Material selection for automotive piston component using Entropy-VIKOR method. Silicon, 12(1), 155-169. http://dx.doi.org/10.1007/s12633-019-00110-y.

48 Goswami, S. S., & Behera, D. K. (2021). Implementation of ENTROPY-ARAS decision making methodology in the selection of best engineering materials. Materials Today: Proceedings, 38(5), 2256-2262. http://dx.doi.org/10.1016/j.matpr.2020.06.320.

49 Mohite, N. T., Patil, G. V., & Kallol, A. N. (2022). The use of entropy-based GRA approach to analyze and optimize the wire electrical discharge machining process for Nitronic-30. Materials Today: Proceedings, 49(Pt 5), 1426-1430. http://dx.doi.org/10.1016/j.matpr.2021.07.133.

50 Aherwar, A., Singh, T., Singh, A., Patnaik, A., & Fekete, G. (2019). Optimum selection of novel developed implant material using hybrid entropy-PROMETHEE approach. Materialwissenschaft und Werkstofftechnik, 50(10), 1232-1241. http://dx.doi.org/10.1002/mawe.201800088.

51 Singh, T., Goswami, C., Patnaik, A., & Lendvai, L. (2022). Optimal design of ceramic based hip implant composites using hybrid AHP-MOORA approach. Material, 15(11), 3800. http://dx.doi.org/10.3390/ma15113800. PMid:35683098.

52 Khargotra, R., Kumar, R., András, K., Fekete, G., & Singh, T. (2022). Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach. Energy, 261(Pt B), 125236. http://dx.doi.org/10.1016/j.energy.2022.125236.
 

64340f32a953954fab10525a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections