Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Bibliometric survey of the PVC production - Part I: the continuous polymerization challenge

Rafael Lima; Jonildo Silva; Mateus Vasconcelos; Carlos Alberto Castor Junior; José Carlos Pinto

Downloads: 0
Views: 45


Poly(vinyl chloride) (PVC) resins constitute the third most important plastic materials available commercially, in terms of worldwide volume production, and can be manufactured through several polymerization mechanisms, including free radical, ionic and redox polymerization processes. Approximately 80% of the worldwide commercial PVC production is performed through suspension polymerization processes in batch mode, due to intrinsic problems of continuous suspension polymerization processes, such as polymer incrustation in reaction vessels, transport equipment and pipes. For this reason, the present review provides an extensive bibliometric survey, including papers and patents, on attempts to develop continuous polymerization process technologies for PVC manufacture. Particularly, the present survey characterizes the degree of maturity and the main bottlenecks of continuous PVC processes that have been frequently overlooked in the technical literature.




PVC, continuous polymerization, suspension polymerization, bibliometry


1 Basmage, O. M., & Hashmi, M. S. J. (2020). Plastic products in hospitals and healthcare systems. In S. Hashmi & I. A. Choudhury (Eds.), Encyclopedia of renewable and sustainable materials (pp. 648-657). UK: Elsevier. http://dx.doi.org/10.1016/B978-0-12-803581-8.11303-7

2 GlobeNewswire. (2021). Poly-vinyl chloride global market Report 2021: COVID-19 impact and recovery to 2030. Retrieved in 2022, July 17, from https://www.globenewswire.com/news-release/2021/08/30/2288176/28124/en/Poly-Vinyl-Chloride-Global-Market-Report-2021-COVID-19-Impact-and-Recovery-to-2030.html

3 Qi, M., Shen, L. P., Wang, Y. M., & Zhou, X. R. (2013). Development of self-cleaning luminous PVC Flexible composite building materials. Applied Mechanics and Materials, 405-408, 2839-2842. http://dx.doi.org/10.4028/www.scientific.net/AMM.405-408.2839.

4 Senhadji, Y., Escadeillas, G., Benosman, A. S., Mouli, M., Khelafi, H., & Kaci, S. O. (2015). Effect of incorporating PVC waste as aggregate on the physical, mechanical, and chloride ion penetration behavior of concrete. Journal of Adhesion Science and Technology, 29(7), 625-640. http://dx.doi.org/10.1080/01694243.2014.1000773.

5 Jia, Z.-G., Ren, L., Li, H.-N., Ho, S.-C., & Song, G.-B. (2015). Experimental study of pipeline leak detection based on hoop strain measurement. Structural Control and Health Monitoring, 22(5), 799-812. http://dx.doi.org/10.1002/stc.1718.

6 Wang, L., Hong, K., Xu, R., Zhao, Z., & Cao, J. (2021). The alleviation of cold-stimulated flesh reddening in ‘Friar’ plum fruit by the elevated CO2 with polyvinyl chloride (PVC) packaging. Scientia Horticulturae, 281, 109997. http://dx.doi.org/10.1016/j.scienta.2021.109997.

7 Islam, I., Sultana, S., Ray, S. K., Nur, H. P., Hossain, M. T., & Ajmotgir, W. M. (2018). Electrical and Tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C Journal of Carbon Research, 4(1), 15. http://dx.doi.org/10.3390/c4010015.

8 Assis, M., Simoes, L. G. P., Tremiliosi, G. C., Ribeiro, L. K., Coelho, D., Minozzi, D. T., Santos, R. I., Vilela, D. C. B., Mascaro, L. H., Andrés, J., & Longo, E. (2021). PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material. Journal of Polymer Research, 28(9), 361. http://dx.doi.org/10.1007/s10965-021-02729-1.

9 Makris, K. F., Langeveld, J., & Clemens, F. H. L. R. (2020). A review on the durability of pvc sewer pipes: research vs. practice. Structure and Infrastructure Engineering, 16(6), 880-897. http://dx.doi.org/10.1080/15732479.2019.1673442.

10 Titow, W. V. (1984). Introduction. In W. V. Titow. PVC technology (pp. 1-35). Netherlands: Springer Netherlands. http://dx.doi.org/10.1007/978-94-009-5614-8_1.

11 Burgess, R. H. (1982). Introduction. In R. H. Burgess (Ed.), Manufacture and processing of PVC (pp. xv-xviii). UK: CRC Press.

12 Purmová, J., Pauwels, K. F. D., Agostini, M., Bruinsma, M., Vorenkamp, E. J., Schouten, A. J., & Coote, M. L. (2008). Experimental and theoretical evaluation of the reactions leading to formation of internal double bonds in suspension PVC. Macromolecules, 41(15), 5527-5539. http://dx.doi.org/10.1021/ma800583k.

13 Wesslén, B., & Wirsén, A. (1975). Anionic polymerization of vinyl chloride. Journal of Polymer Science: Polymer Chemistry Edition, 13(11), 2571-2580. http://dx.doi.org/10.1002/pol.1975.170131114.

14 Guyot, A., & Mordini, J. (1971). Radical and ionic polymerization of vinyl chloride with tert-butylmagnesium chloride. Journal of Polymer Science Part C: Polymer Symposia, 33(1), 65-73. http://dx.doi.org/10.1002/polc.5070330107.

15 Savaş, B., & Öztürk, T. (2020). Synthesis and characterization of poly(vinyl chloride-g-methyl methacrylate) graft copolymer by redox polymerization and Cu catalyzed azide-alkyne cycloaddition reaction. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 57(12), 819-825. http://dx.doi.org/10.1080/10601325.2020.1788393.

16 Fischer, I., Schmitt, W. F., Porth, H.-C., Allsopp, M. W., & Vianello, G. (2014). Poly(Vinyl Chloride). In Wiley-VCH. Ullmann's Encyclopedia of Industrial Chemistry (pp. 1-30). Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/14356007.a21_717.pub2.

17 Abreu, C. M. R., Fonseca, A. C., Rocha, N. M. P., Guthrie, J. T., Serra, A. C., & Coelho, J. F. J. (2018). Poly(vinyl chloride): current status and future perspectives via reversible deactivation radical polymerization methods. Progress in Polymer Science, 87, 34-69. http://dx.doi.org/10.1016/j.progpolymsci.2018.06.007.

18 Kiparissides, C., Daskalakis, G., Achilias, D. S., & Sidiropoulou, E. (1997). Dynamic simulation of industrial Poly(vinyl chloride) batch suspension polymerization reactors. Industrial & Engineering Chemistry Research, 36(4), 1253-1267. http://dx.doi.org/10.1021/ie9604839.

19 Sidiropoulou, E., & Kiparissides, C. (1990). Mathematical modeling of PVC suspension polymerization: a unifying approach and some new results. Journal of Macromolecular Science. Chemistry, 27(3), 257-288. http://dx.doi.org/10.1080/00222339009349551.

20 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1991). Experimental investigation of vinyl chloride polymerization at high conversion: mechanism, kinetics and modelling. Polymer, 32(3), 537-557. http://dx.doi.org/10.1016/0032-3861(91)90462-R.

21 Odian, G. (2004). Principles of polymerization. USA: John Wiley & Sons, Inc. http://dx.doi.org/10.1002/047147875X

22 Park, G. S., & Smith, D. G. (1970). Vinyl chloride studies. II. Initiation and termination in the homogeneous polymerization of vinyl chloride. Die Makromolekulare Chemie, 131(1), 1-6. http://dx.doi.org/10.1002/macp.1970.021310101.

23 Wheeler, R. N., Jr. (1981). Poly(vinyl chloride) processes and products. Environmental Health Perspectives, 41, 123-128. http://dx.doi.org/10.1289/ehp.8141123. PMid:7333230.

24 Ugelstad, J., Fløgstad, H., Hertzberg, T., & Sund, E. (1973). On the bulk polymerization of vinyl chloride. Die Makromolekulare Chemie, 164(1), 171-181. http://dx.doi.org/10.1002/macp.1973.021640117.

25 Endo, K. (2002). Synthesis and structure of poly(vinyl chloride). Progress in Polymer Science, 27(10), 2021-2054. http://dx.doi.org/10.1016/S0079-6700(02)00066-7.

26 Saeki, Y., & Emura, T. (2002). Technical progresses for PVC production. Progress in Polymer Science, 27(10), 2055-2131. http://dx.doi.org/10.1016/S0079-6700(02)00039-4.

27 Sandler, S. R. & Karo, W. (1993). Poly(vinyl chloride). In S. R. Sandler & W. Karo (Eds.), Polymer syntheses (pp. 351-420). USA: Academic Press.

28 Kiparissides, C. (2018). Modeling of suspension vinyl chloride polymerization: from kinetics to particle size distribution and PVC grain morphology. In W. Pauer (Ed.), Polymer reaction engineering of dispersed systems (Vol. 1, pp. 121-193). Switzerland: Springer International Publishing. http://dx.doi.org/10.1007/12_2017_16.

29 Kotoulas, C., & Kiparissides, C. (2006). A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chemical Engineering Science, 61(2), 332-346. http://dx.doi.org/10.1016/j.ces.2005.07.013.

30 Machado, F., Lima, E. L., & Pinto, J. C. (2007). A review on suspension polymerization processes. Polímeros: Ciência e Tecnologia, 17(2), 166-179. http://dx.doi.org/10.1590/S0104-14282007000200016.

31 Alexopoulos, A. H., & Kiparissides, C. (2007). On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I: the effect of primary particle size distribution. Chemical Engineering Science, 62(15), 3970-3983. http://dx.doi.org/10.1016/j.ces.2007.04.009.

32 Doworkin, R. D. (1989). PVC Stabilizers of the Past, Present, and Future. Journal of Vinyl Technology, 11(1), 15-22. http://dx.doi.org/10.1002/vnl.730110106.

33 Wagoner, J. K. (1983). Toxicity of Vinyl Chloride and Poly(vinyl chloride): A Critical Review. Environmental Health Perspectives, 52, 61-66. http://dx.doi.org/10.1289/ehp.835261. PMid:6360677.

34 Liu, Y., Zhou, C., Li, F., Liu, H., & Yang, J. (2020). Stocks and Flows of Polyvinyl Chloride (PVC) in China: 1980-2050. Resources, Conservation and Recycling, 154, 104584. http://dx.doi.org/10.1016/j.resconrec.2019.104584.

35 Bubsy, B. J. (1975). UK Patent No. GB1408320A. UK. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/003764867/publication/GB1408320A?q=AUPA750071

36 Dirix, C. A. M. C., De Jong, J. J. T., Meulenbrugge, L., & Vanduffel, K. A. K. (2007). WO Patent No. WO2007110350A1. Switzerland. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/038181064/publication/WO2007110350A1?q=EP06111682

37 Kircher, C. E., Jr., Jones, R. J., & Kirz, R. F. (1961). US Patent No. US3004013A. USA. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/023689453/publication/US3004013A?q=US3004013

38 Klippert, H. D., Tzschoppe, E., Paschalis, S. D., Weinlich, J. D., & Engelmann, M. D. (1980). EP Patent No. EP0045931A2. Germany. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/006109089/publication/EP0045931A2?q=EP0045931A2

39 Weibin, L., Wenlin, G., Genyou, Y., Dengfeng, P., Jun, Z., Hao, Z., Yueting, Y., Jin, Y., & Lin, G. (2021). CN Patent No. CN112812206A. China. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/075865598/publication/CN112812206A?q=CN112812206

40 Hong, C., Shimin, W., Guohua, S., & Huiyuan, X. (2019). CN Patent No. CN209501640U. China. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/068190633/publication/CN209501640U?q=CN209501640U

41 Yuan, H. G., Kalfas, G., & Ray, W. H. (1991). Suspension polymerization. Journal of Macromolecular Science, Part C: Polymer Reviews, 31(2-3), 215-299. http://dx.doi.org/10.1080/15321799108021924.

42 Bilgiç, T., & Savaşçi, Ö. T. (1994). Encrustation prevention in PVC reactors. Polymer-Plastics Technology and Engineering, 33(3), 381-390. http://dx.doi.org/10.1080/03602559408013099.

43 Levine, S. P., Hebel, K. G., Bolton, J., Jr., & Kugel, R. E. (1975). Industrial analytical chemists and OSHA [Occupational Safety and Health Administration] regulations for vinyl chloride. Analytical Chemistry, 47(12), 1075A-1080a. http://dx.doi.org/10.1021/ac60362a024.

44 Sass, J. B., Castleman, B., & Wallinga, D. (2005). Vinyl chloride: a case study of data suppression and misrepresentation. Environmental Health Perspectives, 113(7), 809-812. http://dx.doi.org/10.1289/ehp.7716. PMid:16002366.

45 Smallwood, P. V. (1986). The formation of grains of suspension poly(vinyl chloride). Polymer, 27(10), 1609-1618. http://dx.doi.org/10.1016/0032-3861(86)90112-6.

46 Xie, T. Y., Hamielec, A. E., Rogestedt, M., & Hjertberg, T. (1994). Experimental investigation of vinyl-chloride polymerization at high conversion - polymer microstructure and thermal-stability and their relationship to polymerization conditions. Polymer, 35(7), 1526-1534. http://dx.doi.org/10.1016/0032-3861(94)90354-9.

47 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1991). Experimental investigation of vinyl-chloride polymerization at high conversion - reactor dynamics. Journal of Applied Polymer Science, 43(7), 1259-1269. http://dx.doi.org/10.1002/app.1991.070430707.

48 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1991). Experimental investigation of vinyl-chloride polymerization at high conversion - molecular-weight development. Polymer, 32(6), 1098-1111. http://dx.doi.org/10.1016/0032-3861(91)90599-E.

49 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1991). Experimental investigation of vinyl-chloride polymerization at high conversion - semibatch reactor modeling. Polymer, 32(11), 2087-2095. http://dx.doi.org/10.1016/0032-3861(91)90177-K.

50 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1987). Experimental investigation of vinyl-chloride polymerization at high conversion - temperature/pressure/conversion and monomer phase distribution relationships. Journal of Applied Polymer Science, 34(4), 1749-1766. http://dx.doi.org/10.1002/app.1987.070340432.

51 Xie, T. Y., Hamielec, A. E., Wood, P. E., Woods, D. R., & Chiantore, O. (1991). Experimental investigation of vinyl-chloride polymerization at high conversion - effect of polymerization conditions on polymer properties. Polymer, 32(9), 1696-1702. http://dx.doi.org/10.1016/0032-3861(91)90408-B.

52 Xie, T. Y., Hamielec, A. E., Wood, P. E., Woods, D. R., & Westmijze, H. (1990). Experimental investigation of vinyl-chloride polymerization at high conversion - conversion and tracer response relationships. Journal of Applied Polymer Science, 41(9-10), 2327-2347. http://dx.doi.org/10.1002/app.1990.070410934.

53 Cebollada, A. F., Schmidt, M. J., Farber, J. N., Capiati, N. J., & Vallés, E. M. (1989). Suspension polymerization of vinyl chloride. I. Influence of viscosity of suspension medium on resin properties. Journal of Applied Polymer Science, 37(1), 145-166. http://dx.doi.org/10.1002/app.1989.070370111.

54 Allsopp, M. W. (1981). The development and importance of suspension PVC morphology. Pure and Applied Chemistry, 53(2), 449-465. http://dx.doi.org/10.1351/pac198153020449.

55 Davidson, J. A., & Witenhafer, D. E. (1980). Particle structure of suspension polyvinyl-chloride and its origin in the polymerization process. Journal of Polymer Science. Polymer Physics Edition, 18(1), 51-69. http://dx.doi.org/10.1002/pol.1980.180180105.

56 Starnes, W. H., Jr., Schilling, F. C., Plitz, I. M., Cais, R. E., Freed, D. J., Hartless, R. L., & Bovey, F. A. (1983). Branch structures in polyvinyl-chloride and the mechanism of chain transfer to monomer during vinyl-chloride polymerization. Macromolecules, 16(5), 790-807. http://dx.doi.org/10.1021/ma00239a016.

57 Abdel-Alim, A. H., & Hamielec, A. E. (1972). Bulk polymerization of vinyl-chloride. Journal of Applied Polymer Science, 16(3), 783-799. http://dx.doi.org/10.1002/app.1972.070160321.

58 Hjertberg, T., & Sörvik, E. M. (1983). Formation of anomalous structures in pvc and their influence on the thermal-stability. 2. Branch structures and tertiary chlorine. Polymer, 24(6), 673-684. http://dx.doi.org/10.1016/0032-3861(83)90003-4.

59 Xie, T. Y., Hamielec, A. E., Wood, P. E., & Woods, D. R. (1991). Suspension, bulk, and emulsion polymerization of vinyl chloride: mechanism, kinetics, and reactor modelling. Journal of Vinyl Technology, 13(1), 2-25. http://dx.doi.org/10.1002/vnl.730130103.

60 Starnes, W. H., Jr. (2002). Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Progress in Polymer Science, 27(10), 2133-2170. http://dx.doi.org/10.1016/S0079-6700(02)00063-1.

61 Bijhanmanesh, M. J., Etesami, N., & Esfahany, M. N. (2016). Continuous dosing of a fast initiator during suspension polymerization of vinyl chloride for enhanced productivity: mathematical modeling and experimental study. Chemical Engineering Communications, 203(11), 1473-1483. http://dx.doi.org/10.1080/00986445.2016.1205981.

62 Faria, J. M., Jr., Machado, F., Lima, E. L., & Pinto, J. C. (2009). Monitoring of vinyl chloride suspension polymerization using NIRS. 2. Proposition of a scheme to control morphological properties of PVC. In R. M. B. Alves, C. A. O. Nascimento & E. C. Biscaia Jr. (Eds.), Computer aided chemical engineering (pp. 1329-1334). UK: Elsevier. doi:http://dx.doi.org/10.1016/S1570-7946(09)70612-1.

63 Tacidelli, A. R., Alves, J. J. N., Vasconcelos, L. G. S., & Brito, R. P. (2009). Increasing PVC Suspension polymerization productivity: an industrial application. Chemical Engineering and Processing, 48(1), 485-492. http://dx.doi.org/10.1016/j.cep.2008.06.007.

64 Castor, C. A., Jr., Pontier, A., Durand, J., Pinto, J. C., & Prat, L. (2017). Real time monitoring of the quiescent suspension copolymerization of vinyl chloride with methyl methacrylate in microreactors - Part 3. A kinetic study by raman spectroscopy and evolution of droplet size. Chemical Engineering Science, 173, 493-506. http://dx.doi.org/10.1016/j.ces.2017.08.018.

65 Hammer, S., Tzur, A., Cohen, Y., & Narkis, M. (2009). Modification of porous PVC particles with polyacrylate elastomers using a surfactant-free aqueous dispersion polymerization technique. e-Polymers, 9(1), 066. http://dx.doi.org/10.1515/epoly.2009.9.1.813.

66 Baade, W., Moritz, H. U., & Reichert, K. H. (1982). Kinetics of high conversion polymerization of vinyl acetate. effects of mixing and reactor type on polymer properties. Journal of Applied Polymer Science, 27(6), 2249-2267. http://dx.doi.org/10.1002/app.1982.070270634.

67 Bally, F., Serra, C. A., Brochon, C., Anton, N., Vandamme, T., & Hadziioannou, G. (2011). A continuous-flow polymerization microprocess with online GPC and inline polymer recovery by micromixer-assisted nanoprecipitation. Macromolecular Reaction Engineering, 5(11-12), 542-547. http://dx.doi.org/10.1002/mren.201100047.

68 Hatate, Y., Ikari, A., Nakashio, F., & Kondo, K. (1981). Effect of coalescence and redispersion on suspension polymerization of styrene in a continuous stirred tank reactor. Journal of Chemical Engineering of Japan, 14(6), 493-495. http://dx.doi.org/10.1252/jcej.14.493.

69 Hatate, Y., Ikeura, T., Shinonome, M., Kondo, K., & Nakashio, F. (1981). Suspension polymerization of styrene under ultrasonic irradiation. Journal of Chemical Engineering of Japan, 14(1), 38-43. http://dx.doi.org/10.1252/jcej.14.38.

70 Liu, Z., Lu, Y., Yang, B., & Luo, G. (2011). Controllable preparation of poly(butyl acrylate) by suspension polymerization in a coaxial capillary microreactor. Industrial & Engineering Chemistry Research, 50(21), 11853-11862. http://dx.doi.org/10.1021/ie201497b.

71 Lobry, E., Lasuye, T., Gourdon, C., & Xuereb, C. (2015). Liquid-liquid dispersion in a continuous oscillatory baffled reactor - application to suspension polymerization. Chemical Engineering Journal, 259, 505-518. http://dx.doi.org/10.1016/j.cej.2014.08.014.

72 Sen, N., Shaikh, T., Singh, K. K., Sirsam, R., & Shenoy, K. T. (2020). Synthesis of Polyacrylamide (PAM) beads in microreactors. Chemical Engineering and Processing, 157, 108105. http://dx.doi.org/10.1016/j.cep.2020.108105.

73 Wang, X., Zhu, J., Shao, T., Chen, S. F., Luo, X., & Zhang, L. (2018). Microfluidic-assisted controllable formation of millimeter-scale poly(divinylbenzene) foam shells. Polymer Engineering and Science, 58(7), 1184-1192. http://dx.doi.org/10.1002/pen.24680.

74 Zourob, M., Mohr, S., Mayes, A. G., Macaskill, A., Pérez-Moral, N., Fielden, P. R., & Goddard, N. J. (2006). A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab on a Chip, 6(2), 296-301. http://dx.doi.org/10.1039/b513195b. PMid:16450041.

75 Ni, X., Mignard, D., Saye, B., Johnstone, J. C., & Pereira, N. (2002). On the evaluation of droplet breakage and coalescence rates in an oscillatory baffled reactor. Chemical Engineering Science, 57(11), 2101-2114. http://dx.doi.org/10.1016/S0009-2509(02)00100-8.

76 Ni, X., Murray, K. R., Zhang, Y., Bennett, D., & Howes, T. (2002). Polymer product engineering utilising oscillatory baffled reactors. Powder Technology, 124(3), 281-286. http://dx.doi.org/10.1016/S0032-5910(02)00022-0.

77 Pinto, J. C. (1990). Dynamic behavior of continuous vinyl chloride bulk and suspension polymerization reactors. a simple model analysis. Polymer Engineering and Science, 30(5), 291-302. http://dx.doi.org/10.1002/pen.760300506.

78 Pinto, J. C. (1990). Dynamic behavior of continuous vinyl chloride suspension polymerization reactors: effects of segregation. Polymer Engineering and Science, 30(15), 925-930. http://dx.doi.org/10.1002/pen.760301507.

79 Hatate, Y., Ikari, A., Nakashio, F., & Kondo, K. (1984). A simulation of continuous suspension polymerization of styrene by the Monte Carlo method. Journal of Chemical Engineering of Japan, 17(3), 339-342. http://dx.doi.org/10.1252/jcej.17.339.

80 Galkin, P. A., Selivanov, Y. T., & Lazarev, S. I. (2020). Hardware design of continuous polymerization of methyl methacrylate in suspension using pulsating mixing. Chemical and Petroleum Engineering, 56(7), 616-625. http://dx.doi.org/10.1007/s10556-020-00818-4.

81 Galkin, P. A., Selivanov, Y. T., Lazarev, S. I., & Selivanov, A. Y. (2021). Optimization of process conditions and implementation of continuous methyl methacrylate polymerization process in suspension. Chemical and Petroleum Engineering, 57(5), 447-456. http://dx.doi.org/10.1007/s10556-021-00958-1.

82 Kim, S. H., Lee, J. H., & Braatz, R. D. (2021). Multi-scale fluid dynamics simulation based on mp-pic-pbe method for PMMA suspension polymerization. Computers & Chemical Engineering, 152, 107391. http://dx.doi.org/10.1016/j.compchemeng.2021.107391.

83 Dorobantu Bodoc, M., Prat, L., Xuereb, C., Gourdon, C., & Lasuye, T. (2012). Online monitoring of vinyl chloride polymerization in a microreactor using raman spectroscopy. Chemical Engineering & Technology, 35(4), 705-712. http://dx.doi.org/10.1002/ceat.201100564.

84 Castor, C. A., Jr., Pontier, A., Durand, J., Pinto, J. C., & Prat, L. (2016). Real time monitoring of the quiescent suspension polymerization of vinyl chloride in microreactors - Part 2. A kinetic study by raman spectroscopy and evolution of Droplet Size. Chemical Engineering Science, 145, 279-293. http://dx.doi.org/10.1016/j.ces.2016.02.025.

85 Jin, K. Y., & Kyung-Hyun, K. (2012). WO Patent No. WO2012008654A1. Switzerland. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/045469631/publication/WO2012008654A1?q=WO2012008654

86 Kwon, L. D., Hyon, K. K., Hee, P. B., Woong, L. S., & Hyuck, J. J. (2015). WO Patent No. WO2015047021A1. Switzerland. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/053033521/publication/WO2015047021A1?q=WO2015047021A1

87 Hong, C., Yun, L., Min, D., & Zerong, L. (2017). CN Patent No. CN106986957A. China. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/059417989/publication/CN106986957A?q=pn%3DCN106986957A

88 Barroso, E. G., Duarte, F. M., Couto, M., & Maia, J. M. (2008). A rheological study of the ageing of emulsion and microsuspension-based PVC plastisols. Journal of Applied Polymer Science, 109(1), 664-673. http://dx.doi.org/10.1002/app.28173.

89 Kazuhiro, K., & Tadashi, A. (2000). JP Patent No. JP2000063403A. Japan. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/017230511/publication/JP2000063403A?q=JP2000063403A

90 Toshiaki, E., Satoru, Y., & Takaharu, M. (2001). JP Patent No. JP2001146502A. Japan: Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/026540407/publication/JP2001146502A?q=JP2001146502A

91 Beyong-Guk, A., Seong-Yong, A., Soo-Hwan, H., & Kyung-Hyun, K. (2015). KR Patent No. KR20150037050A. Republic of Korea. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/053033101/publication/KR20150037050A?q=KR20150037050A

92 Takahiro, C., Hiromasa, M., & Norihisa, S. (2018). WO Patent No. WO2018123233A1. Switzerland. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/062707969/publication/WO2018123233A1?q=WO2018123233A1

93 Jun, J. Y., Kyou, H. H., Chul, L. J., Hyuck, J. J., & Jeong, K. M. (2017). WO Patent No. WO2017191899A1. Switzerlandt. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/060202939/publication/WO2017191899A1?q=WO2017191899A1

94 Paul, K., Hwan, K. J., & Chil, K. H. (2018). KR Patent No. KR101887638B1. Republic of Korea. Retrieved in 2022, July 17, from https://worldwide.espacenet.com/patent/search/family/063229527/publication/KR101887638B1?q=KR101887638B1

95 Huang, Z., Pan, P., & Bao, Y. (2016). Solution and aqueous miniemulsion polymerization of vinyl chloride mediated by a fluorinated xanthate. Journal of Polymer Science. Part A, Polymer Chemistry, 54(14), 2092-2101. http://dx.doi.org/10.1002/pola.28074.

96 Kronman, A. G., Groshev, G. L., Leshina, L. V., Sitnikova, E. F., & Sulina, T. V. (2001). Polymerization of vinyl chloride in the presence of alcohols. Russian Journal of Applied Chemistry, 74(6), 1007-1009. http://dx.doi.org/10.1023/A:1013007810113.

97 Lin, C. Y., Coote, M. L., Gennaro, A., & Matyjaszewski, K. (2008). Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. Journal of the American Chemical Society, 130(38), 12762-12774. http://dx.doi.org/10.1021/ja8038823. PMid:18761460.

98 Liu, K., Pan, P., & Bao, Y. (2015). Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly(vinyl chloride)-g-Poly(N-isopropylacrylamide) amphiphilic copolymer. RSC Advances, 5(115), 94582-94590. http://dx.doi.org/10.1039/C5RA16726D.

99 Endo, K., Kaneda, N., Waku, H., Saitoh, M., & Emori, N. (2001). Polymerization of vinyl chloride with butyllithiums and metallocene catalysts. Journal of Vinyl and Additive Technology, 7(4), 177-183. http://dx.doi.org/10.1002/vnl.10289.

100 Guarrotxena, N., Schue, F., Collet, A., & Millán, J. L. (2003). On the stereochemical composition of poly(vinyl chloride) (PVC) and Polypropylene (PP): a phenomenological study. Polymer International, 52(3), 420-428. http://dx.doi.org/10.1002/pi.1102.

101 Piette, Y., Debuigne, A., Jérôme, C., Bodart, V., Poli, R., & Detrembleur, C. (2012). Cobalt-mediated radical (co)polymerization of vinyl chloride and vinyl acetate. Polymer Chemistry, 3(10), 2880-2891. http://dx.doi.org/10.1039/c2py20413d.

102 Tsuchiya, Y., Nomaguchi, T., & Endo, K. (2008). Bulk polymerization of vinyl chloride with half-titanocene/MAO catalyst. Polymer, 49(5), 1180-1184. http://dx.doi.org/10.1016/j.polymer.2008.01.032.

103 Santos, J. C., Lopes, C. N., Reis, M. M., Giudici, R., Sayer, C., Machado, R. A. F., & Araújo, P. H. H. (2008). Comparison of techniques for the determination of conversion during suspension polymerization reactions. Brazilian Journal of Chemical Engineering, 25(2), 399-407. http://dx.doi.org/10.1590/S0104-66322008000200017.

104 Aasberg-Petersen, K., Christensen, T. S., Dybkjaer, I., Sehested, J., Østberg, M., Coertzen, R. M., Keyser, M. J., & Steynberg, A. P. (2004). Synthesis gas production for FT synthesis. In A. Steynberg & M. Dry (Eds.), Studies in surface science and catalysis (pp. 258-405). Netherlands: Elsevier. doi:http://dx.doi.org/10.1016/S0167-2991(04)80461-0

105 Liu, B., Wang, Y., Gao, Y., Zhong, R., Zhang, F., Zhang, M., & Zhang, H. (2017). Effect of the matrix plasticization behavior on mechanical properties of PVC/ABS blends. Journal of Polymer Engineering, 37(3), 239-245. http://dx.doi.org/10.1515/polyeng-2015-0533.

106 Ren, L., Li, Y., Zhang, M., Han, Y., & Zhang, H. (2016). Toughness, dynamic mechanical property, and morphology of polyvinylchloride/acrylonitrile-styrene-butyl acrylate blends. Journal of Vinyl and Additive Technology, 22(1), 43-50. http://dx.doi.org/10.1002/vnl.21435.

107 Zhou, C., Wu, S., Liu, H., & Wu, G. (2016). Effects of core‐shell particle growth manners on morphologies and properties of poly(vinyl chloride)/(methyl methacrylate-butadiene-styrene) blends. Journal of Vinyl and Additive Technology, 22(1), 37-42. http://dx.doi.org/10.1002/vnl.21438.

108 Pan, M., Shi, X., Li, X., Hu, H., & Zhang, L. (2004). Morphology and properties of pvc/clay nanocomposites via in situ emulsion polymerization. Journal of Applied Polymer Science, 94(1), 277-286. http://dx.doi.org/10.1002/app.20896.

109 Yang, W., Wu, Q., Zhou, L., & Wang, S. (1997). Styrene-co-acrylonitrile resin modifications of PVC/CPE blends. Journal of Applied Polymer Science, 66(8), 1455-1460. http://dx.doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1455::AID-APP5>3.0.CO;2-D.

110 Ren, T., Wang, J., Yuan, J., Pan, M., Liu, G., Zhang, G., Zhong, G.-J., & Li, Z.-M. (2015). Raspberry-like morphology of polyvinyl chloride/zinc oxide nanoparticles induced by surface interaction and formation of nanoporous foam. RSC Advances, 5(46), 36845-36857. http://dx.doi.org/10.1039/C5RA02694F.

111 Salehi-Mobarakeh, H., & Hassannia Roudboneh, M. (2006). Study of vinyl acetate partitioning in emulsion copolymerization of vinyl chloride-vinyl acetate by FTIR and HNMR spectroscopy. Journal of Polymer Research, 13(5), 421-426. http://dx.doi.org/10.1007/s10965-006-9062-x.

112 Chen, F., Ye, F., Chu, G., Guo, J., & Huo, L. (2010). Synthesis of acrylate modified vinyl chloride and vinyl isobutyl ether copolymers and their properties. Progress in Organic Coatings, 67(1), 60-65. http://dx.doi.org/10.1016/j.porgcoat.2009.09.014.

113 Forcolin, S., Marconi, A. M., Ghielmi, A., Butté, A., Storti, G., & Morbidelli, M. (1999). Coagulation phenomena in emulsion polymerisation of vinyl chloride. Plastics, Rubber and Composites, 28(3), 109-115. http://dx.doi.org/10.1179/146580199101540196.

114 Kiparissides, C., Achilias, D. S., & Frantzikinakis, C. E. (2002). The effect of oxygen on the kinetics and particle size distribution in vinyl chloride emulsion polymerization. Industrial & Engineering Chemistry Research, 41(13), 3097-3109. http://dx.doi.org/10.1021/ie010928f.

115 Vale, H. M., & McKenna, T. F. (2009). Particle formation in vinyl chloride emulsion polymerization: reaction modeling. Industrial & Engineering Chemistry Research, 48(11), 5193-5210. http://dx.doi.org/10.1021/ie801406n.

116 Pakdel, A. S., Saeb, M. R., Abedini, H., Khonakdar, H. A., & Boldt, R. (2014). A combinatorial approach to evaluation of monomer conversion and particle size distribution in vinyl chloride emulsion polymerization. Polymer Bulletin, 71(10), 2487-2506. http://dx.doi.org/10.1007/s00289-014-1203-5.

117 Wang, H., Li, Y., Wei, Z., Song, Y., Liu, Q., Wu, C., Wang, H., & Jiang, H. (2020). Morphology, mechanical property, and processing thermal stability of PVC/La-OMMTs nanocomposites prepared via in situ intercalative polymerization. Journal of Vinyl and Additive Technology, 26(1), 97-108. http://dx.doi.org/10.1002/vnl.21719.

118 Wang, H., Xie, G., Fang, M., Ying, Z., Tong, Y., & Zeng, Y. (2017). Mechanical reinforcement of Graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods. Composites. Part B, Engineering, 113, 278-284. http://dx.doi.org/10.1016/j.compositesb.2017.01.053.

119 Obloj-Muzaj, M., Abramowicz, A., Kumosinski, M., Zielecka, M., Kozakiewicz, J., & Gorska, A. (2016). Properties of blends for profiles and semi-rigid films made of PVC nanocomposites produced in pilot scale. AIP Conference Proceedings, 1736(1), 020065. http://dx.doi.org/10.1063/1.4949640.

120 Rocha, N., Coelho, J. F. J., Cardoso, P. M. L., Barros, B., Gonçalves, P. M., Gil, M. H., & Guthrie, J. T. (2013). Synthesis of amphiphilic PVC-b-poly(hydroxypropyl acrylate) (PHPA)-b-PVC block copolymers with low PHPA contents and different molecular weights by (Single Electron Transfer): (Degenerative Chain Transfer) living radical polymerization. Journal of Vinyl and Additive Technology, 19(3), 157-167. http://dx.doi.org/10.1002/vnl.21309.

121 Darvishi, R., Esfahany, M. N., & Bagheri, R. (2016). Nonisothermal Suspension polymerization of vinyl chloride for enhanced productivity. Journal of Vinyl and Additive Technology, 22(4), 470-478. http://dx.doi.org/10.1002/vnl.21466.

122 Hao, H. D., Cheng, T. Q., Zhang, Y. F., Zhu, N., Lei, J. Y., & Zhai, T. (2014). Flow field analysis of PVC polymerizer. Advanced Materials Research, 884-885, 68-72. http://dx.doi.org/10.4028/www.scientific.net/AMR.884-885.68.

123 Shulaeva, E. A., Kovalenko, Y. F., & Shulaev, N. S. (2014). Simulation and modeling software in chemical technology: polymerization of vinyl chloride. Advanced Materials Research, 1040, 581-584. http://dx.doi.org/10.4028/www.scientific.net/AMR.1040.581.

124 Kiparissides, C., & Pladis, P. (2022). On the prediction of suspension viscosity, grain morphology, and agitation power in SPVC reactors. Canadian Journal of Chemical Engineering, 100(4), 714-730. http://dx.doi.org/10.1002/cjce.24262.

125 Maggioris, D., Goulas, A., Alexopoulos, A. H., Chatzi, E. G., & Kiparissides, C. (2000). Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity. Chemical Engineering Science, 55(20), 4611-4627. http://dx.doi.org/10.1016/S0009-2509(00)00100-7.

126 Oki, Y., & Okamoto, Y. (2002). Synthesis of AB and ABA type block copolymers of vinyl chloride using iniferter technique. Polymer Journal, 34(10), 736-741. http://dx.doi.org/10.1295/polymj.34.736.

127 Zhang, S., & Wang, J. (2020). Numerical simulation of reaction efficiency of vinyl chloride suspension polymerization reactor. IOP Conference Series. Earth and Environmental Science, 546(4), 042059. http://dx.doi.org/10.1088/1755-1315/546/4/042059.

64f721b3a95395524b1e7ba4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections