Recent advances in the use of Polyamide-based materials for the automotive industry
Marcel Yuzo Kondo; Larissa Stieven Montagna; Guilherme Ferreira de Melo Morgado; André Luiz Guimarães de Castilho; Larissa Anne Pereira dos Santos Batista; Edson Cocchieri Botelho; Michelle Leali Costa; Fabio Roberto Passador; Mirabel Cerqueira Rezende; Marcos Valério Ribeiro
Abstract
Keywords
References
1 Venoor, V., Park, J. H., Kazmer, D. O., & Sobkowicz, M. J. (2021). Understanding the effect of water in polyamides: a review.
2 Deshoulles, Q., Le Gall, M., Dreanno, C., Arhant, M., Priour, D., & Le Gac, P. Y. (2021). Modelling pure polyamide 6 hydrolysis: influence of water content in the amorphous phase.
3 Troughton, M. J. (2009). Polyamides. In M. J. Troughton (Ed.),
4 McKeen, L. W. (2019). Polyamides (nylons). In L. W. McKeen.
5 Silva, T. F., Melo Morgado, G. F., Amaral Montanheiro, T. L., Montagna, L. S., Albers, A. P. F., & Passador, F. R. (2020). A simple mixing method for polyamide 12/attapulgite nanocomposites: structural and mechanical characterization.
6 Kiziltas, A., Liu, W., Tamrakar, S., & Mielewski, D. (2021). Graphene nanoplatelet reinforcement for thermal and mechanical properties enhancement of bio-based polyamide 6, 10 nanocomposites for automotive applications.
7 Kurokawa, M., Uchiyama, Y., Iwai, T., & Nagai, S. (2003). Performance of plastic gear made of carbon fiber reinforced polyamide 12.
8 Obeid, H., Clément, A., Fréour, S., Jacquemin, F., & Casari, P. (2018). On the identification of the coefficient of moisture expansion of polyamide-6: accounting differential swelling strains and plasticization.
9 Wiese, M., Thiede, S., & Herrmann, C. (2020). Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges.
10 Stan, D. V. (2020). Considerations on the drying of the raw material and consequences on the quality of the injected products.
11 Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials.
12 Caggiano, A., Improta, I., & Nele, L. (2018). Characterization of a new dry drill-milling process of carbon fibre reinforced polymer laminates.
13 Gaugel, S., Sripathy, P., Haeger, A., Meinhard, D., Bernthaler, T., Lissek, F., Kaufeld, M., Knoblauch, V., & Schneider, G. (2016). A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP).
14 Meinhard, D., Haeger, A., & Knoblauch, V. (2021). Drilling induced defects on carbon fiber-reinforced thermoplastic polyamide and their effect on mechanical properties.
15 Bertolini, R., Ghiotti, A., & Bruschi, S. (2020). Machinability Of Polyamide 6 Under Cryogenic Cooling Conditions.
16 Kuram, E. (2016). Micro-machinability of injection molded polyamide 6 polymer and glass-fiber reinforced polyamide 6 composite.
17 Ramezani-Dana, H., Gomina, M., Bréard, J., & Orange, G. (2021). Experimental investigation of the mechanical behavior of glass fiber/high fluidity polyamide-based composites for automotive market.
18 European Commission.
19 Nguyen-Tran, H.-D., Hoang, V.-T., Do, V.-T., Chun, D.-M., & Yum, Y.-J. (2018). Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts.
20 Grätzl, T., van Dijk, Y., Schramm, N., & Kroll, L. (2019). Influence of the automotive paint shop on mechanical properties of continuous fibre-reinforced thermoplastics.
21 European Parliament.
22 Amasawa, E., Hasegawa, M., Yokokawa, N., Sugiyama, H., & Hirao, M. (2020). Environmental performance of an electric vehicle composed of 47% polymers and polymer composites.
23 Chauhan, V., Kärki, T., & Varis, J. (2019). Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques.
24 Boopathy, G., Prakash, J. U., Gurusami, K., & Kumar, J. V. S. P. (2022). Investigation on process parameters for injection moulding of nylon 6/SiC and nylon 6/B4C composites.
25 Muminovic, A. J., Pervan, N., Delic, M., Muratovic, E., Mesic, E., & Braut, S. (2022). Failure analysis of nylon gears made by additive manufacturing.
26 Dhaduti, S. C., Sarganachari, S. G., Patil, A. Y., & Yunus Khan, T. M. (2020). Prediction of injection molding parameters for symmetric spur gear.
27 Zhang, Y., Mao, K., Leigh, S., Shah, A., Chao, Z., & Ma, G. (2020). A parametric study of 3D printed polymer gears.
28 SriMurugan, R., Ramnath, B. V., Ramanan, N., & Elanchezhian, C. (2019). Study on mechanical and metallurgical properties of glass fibre reinforced PMC gear materials.
29 Karthikeyan, R., Rajkumar, S., Bensingh, R. J., Kader, M. A., & Nayak, S. K. (2020). Finite element analysis of elastomer used in automotive suspension systems.
30 Singh, R., Kumar, R., Ranjan, N., Penna, R., & Fraternali, F. (2018). On the recyclability of polyamide for sustainable composite structures in civil engineering.
31 Chen, P., Wu, H., Zhu, W., Yang, L., Li, Z., Yan, C., Wen, S., & Shi, Y. (2018). Investigation into the processability, recyclability and crystalline structure of selective laser sintered Polyamide 6 in comparison with Polyamide 12.
32 Spronk, S. W. F., Kersemans, M., De Baerdemaeker, J. C. A., Gilabert, F. A., Sevenois, R. D. B., Garoz, D., Kassapoglou, C., & Van Paepegem, W. (2017). Comparing damage from low-velocity impact and quasi-static indentation in automotive carbon/epoxy and glass/polyamide-6 laminates.
33 Murray, J. J., Allen, T., Bickerton, S., Bajpai, A., Gleich, K., McCarthy, E. D., & Brádaigh, C. M. Ó. (2021). Thermoplastic RTM: impact properties of anionically polymerised polyamide 6 composites for structural automotive parts.
34 Ishikawa, T., Amaoka, K., Masubuchi, Y., Yamamoto, T., Yamanaka, A., Arai, M., & Takahashi, J. (2018). Overview of automotive structural composites technology developments in Japan.
35 Caltagirone, P. E., Ginder, R. S., Ozcan, S., Li, K., Gay, A. M., Stonecash, J., Steirer, K. X., Cousins, D., Kline, S. P., Maxey, A. T., & Stebner, A. P. (2021). Substitution of virgin carbon fiber with low-cost recycled fiber in automotive grade injection molding polyamide 66 for equivalent composite mechanical performance with improved sustainability.
36 Caputo, F., Lamanna, G., De Luca, A., & Armentani, E. (2020). Thermo-mechanical investigation on an automotive engine encapsulation system made of fiberglass reinforced polyamide PA6 GF30 material.
37 Volpe, V., Lanzillo, S., Affinita, G., Villacci, B., Macchiarolo, I., & Pantani, R. (2019). Lightweight high-performance polymer composite for automotive applications.
38 Mosey, S., Korkees, F., Rees, A., & Llewelyn, G. (2020). Investigation into fibre orientation and weldline reduction of injection moulded short glass-fibre/polyamide 6-6 automotive components.
39 Wei, X.-F., Kallio, K. J., Bruder, S., Bellander, M., Olsson, R. T., & Hedenqvist, M. S. (2020). High-performance glass-fibre reinforced biobased aromatic polyamide in automotive biofuel supply systems.
40 Hıdıroğlu, M., Aksüt, D., Serçe, O., Karabulut, H., & Şen, M. (2019). Reducing the hydrocarbon gas diffusion and increasing the pressure-impact strength of fuel transfer pipelines for use in the automotive industry using radiation crosslinked polyamide 12.
41 Özbay, B., & Serhatlı, E. (2020). Processing and characterization of hollow glass-filled polyamide 12 composites by selective laser sintering method.
42 Santonocito, D. (2020). Evaluation of fatigue properties of 3D-printed Polyamide-12 by means of energy approach during tensile tests.
43 Shinzawa, H., & Mizukado, J. (2020). Water absorption by polyamide (PA) 6 studied with two-trace two-dimensional (2T2D) near-infrared (NIR) correlation spectroscopy.
44 Teixeira, D., Giovanela, M., Gonella, L. B., & Crespo, J. S. (2013). Influence of flow restriction on the microstructure and mechanical properties of long glass fiber-reinforced polyamide 6.6 composites for automotive applications.
45 Marset, D., Dolza, C., Boronat, T., Montanes, N., Balart, R., Sanchez-Nacher, L., & Quiles-Carrillo, L. (2020). Injection-Molded parts of partially biobased polyamide 610 and biobased halloysite nanotubes.
46 Abdelwahab, M., Codou, A., Anstey, A., Mohanty, A. K., & Misra, M. (2020). Studies on the dimensional stability and mechanical properties of nanobiocomposites from polyamide 6-filled with biocarbon and nanoclay hybrid systems.
47 Venkatraman, P., Trotto, E., Burgoyne, I., & Foster, E. J. (2020). Premixed cellulose nanocrystal reinforcement of polyamide 6 for melt processing.
48 Sabiston, T., Li, B., Kang, J., Wilkinson, D., & Engler-Pinto, C. (2021). Accounting for the microstructure in the prediction of the fatigue life of injection moulded composites for automotive applications.
49 Kawai, M., Funaki, S., Taketa, I., & Hirano, N. (2019). Temperature-dependent constant fatigue life diagram for press-formed short carbon fiber reinforced polyamide composite.
50 Ozmen, S. C., Ozkoc, G., & Serhatli, E. (2019). Thermal, mechanical and physical properties of chain extended recycled polyamide 6 via reactive extrusion: effect of chain extender types.
51 Ogunsona, E. O., Codou, A., Misra, M., & Mohanty, A. K. (2019). A critical review on the fabrication processes and performance of polyamide biocomposites from a biofiller perspective.
52 Borrelli, A., D’Errico, G., Borrelli, C., & Citarella, R. (2020). Assessment of crash performance of an automotive component made through additive manufacturing.
53 Lupone, F., Padovano, E., Veca, A., Franceschetti, L., & Badini, C. (2020). Innovative processing route combining fused deposition modelling and laser writing for the manufacturing of multifunctional polyamide/carbon fiber composites.
54 Batista, N. L., Olivier, P., Bernhart, G., Rezende, M. C., & Botelho, E. C. (2016). Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates.
55 Liu, B., Hu, G., Zhang, J., & Wang, Z. (2019). The non-isothermal crystallization behavior of polyamide 6 and polyamide 6/HDPE/MAH/L-101 composites.
56 Liu, T., Mo, Z., Wang, S., & Zhang, H. (1997). Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK).
57 Zaldua, N., Maiz, J., de la Calle, A., García-Arrieta, S., Elizetxea, C., Harismendy, I., Tercjak, A., & Müller, A. J. (2019). Nucleation and crystallization of PA6 composites prepared by T-RTM: effects of carbon and glass fiber loading.
58 Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., & Verpoest, I. (2020). Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices.
59 Li, M.-X., Lee, D., Lee, G. H., Kim, S. M., Ben, G., Lee, W. I., & Choi, S. W. (2020). Effect of temperature on the mechanical properties and polymerization kinetics of polyamide-6 composites.
60 Yaghini, N., & Peters, G. W. M. (2021). Modeling Crystallization Kinetics and Resulting Properties of Polyamide 6.
61 Uematsu, H., Kawasaki, T., Koizumi, K., Yamaguchi, A., Sugihara, S., Yamane, M., Kawabe, K., Ozaki, Y., & Tanoue, S. (2021). Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using Micro-Raman spectroscopy.
62 Handwerker, M., Wellnitz, J., Marzbani, H., & Tetzlaff, U. (2021). Annealing of chopped and continuous fibre reinforced polyamide 6 produced by fused filament fabrication.
63 Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix.
64 Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites.
65 Chabaud, G., Castro, M., Denoual, C., & Le Duigou, A. (2019). Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications.
66 Paolucci, F., van Mook, M. J. H., Govaert, L. E., & Peters, G. W. M. (2019). Influence of post-condensation on the crystallization kinetics of PA12: from virgin to reused powder.
67 Ma, N., Liu, W., Ma, L., He, S., Liu, H., Zhang, Z., Sun, A., Huang, M., & Zhu, C. (2020). Crystal transition and thermal behavior of Nylon 12.
68 Su, Y., Jia, Z., Niu, B., & Bi, G. (2017). Size effect of depth of cut on chip formation mechanism in machining of CFRP.
69 Ervine, P., O’Donnell, G. E., & Walsh, B. (2015). Fundamental investigations into burr formation and damage mechanisms in the micro-milling of a biomedical grade polymer.
70 Davim, J. P., Silva, L. R., Festas, A., & Abrão, A. M. (2009). Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing.
71 Ferreira, I., Madureira, R., Villa, S., de Jesus, A., Machado, M., & Alves, J. L. (2020). Machinability of PA12 and short fibre–reinforced PA12 materials produced by fused filament fabrication.
72 Chang, D.-Y., Lin, C.-H., Wu, X.-Y., Yang, C.-C., & Chou, S.-C. (2021). Cutting force, vibration, and temperature in drilling on a thermoplastic material of PEEK.
73 Yan, Y., Mao, Y., Li, B., & Zhou, P. (2021). Machinability of the thermoplastic polymers: PEEK, PI, and PMMA.
74 Mohankumar, P., Ajayan, J., Yasodharan, R., Devendran, P., & Sambasivam, R. (2019). A review of micromachined sensors for automotive applications.
75 Hiwale, S., & Rajiv, B. (2020). Experimental investigations of laser machining process parameters using response surface methodology.
76 Bañon, F., Sambruno, A., Batista, M., Simonet, B., & Salguero, J. (2020). Study of the surface quality of carbon fiber–reinforced thermoplastic matrix composite (CFRTP) machined by abrasive water jet (AWJM).
77 Li, M., Soo, S. L., Aspinwall, D. K., Pearson, D., & Leahy, W. (2018). Study on tool wear and workpiece surface integrity following drilling of CFRP laminates with variable feed rate strategy.
78 Karatas, E., Gul, O., Karsli, N. G., & Yilmaz, T. (2019). Synergetic effect of graphene nanoplatelet, carbon fiber and coupling agent addition on the tribological, mechanical and thermal properties of polyamide 6,6 composites.
79 Kießling, R., Dittes, A., Lampke, T., & Ihlemann, J. (2021). Coupled experimental and simulative investigation of the influence of polymer moisture content on the strength of amino-silane-mediated aluminum polyamide 6 joints.
80 Tapper, R. J., Longana, M. L., Hamerton, I., & Potter, K. D. (2019). A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites.
81 European Parliament and Council of the European Union.
82 European Parliament and Council of European Union.
83 Chohan, J. S., & Singh, R. (2022). Thermosetting polymers: a review on primary, secondary, tertiary and quaternary recycling.
84 Howarth, J., Mareddy, S. S. R., & Mativenga, P. T. (2014). Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite.
85 Chanda, M. (2021). Chemical aspects of polymer recycling.
86 Lee, J., Kwon, E. E., Lam, S. S., Chen, W.-H., Rinklebe, J., & Park, Y.-K. (2021). Chemical recycling of plastic waste via thermocatalytic routes.
87 Nemade, A. M., & Zope, V. S. (2020). Chemical recycling of polyamide waste.
88 Alberti, C., Figueira, R., Hofmann, M., Koschke, S., & Enthaler, S. (2019). Chemical recycling of end-of-life polyamide 6 via ring closing depolymerization.
89 Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids.
90 Kumar, A., von Wolff, N., Rauch, M., Zou, Y.-Q., Shmul, G., Ben-David, Y., Leitus, G., Avram, L., & Milstein, D. (2020). Hydrogenative depolymerization of nylons.
91 Mondragon, G., Kortaberria, G., Mendiburu, E., González, N., Arbelaiz, A., & Peña-Rodriguez, C. (2020). Thermomechanical recycling of polyamide 6 from fishing nets waste.
92 Kunchimon, S. Z., Tausif, M., Goswami, P., & Cheung, V. (2019). Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion.
93 Souza, G. P. M., Anjos, E. G. R., Montagna, L. S., Ferro, O., & Passador, F. R. (2019). A new strategy for the use of post-processing vacuum bags from aerospace supplies: nucleating agent to LLDPE phase in PA6/LLDPE blends.
94 Moreno, D. D. P., & Saron, C. (2018). Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste.
95 Pietroluongo, M., Padovano, E., Frache, A., & Badini, C. (2019). Mechanical recycling of an end-of-life automotive composite component.
96 Češarek, U., Pahovnik, D., & Žagar, E. (2020). Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery.
97 Datta, J., Błażek, K., Włoch, M., & Bukowski, R. (2018). A New approach to chemical recycling of polyamide 6.6 and synthesis of polyurethanes with recovered intermediates.