Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220027
Polímeros: Ciência e Tecnologia
Original Article

A hybrid green composite for automotive industry

Gabriella Neto Chagas; Maiccon Martins Barros; Ariadne Gonçalves de Leão; Neyda de La Caridad Om Tapanes; Roberto Carlos da Conceição Ribeiro; Daniele Cruz Bastos

Downloads: 1
Views: 597

Abstract

Hybrid composites were prepared using recycled polypropylene (rPP), dimension stone waste (Bege Bahia, BB) and coconut fiber (CF). Post-consumer the formulations of rPP/BB/CF and virgin PP, were processed in a Haake mixer. The films were characterized according to chemical, physical and mechanical properties. Multiple linear regression tests were used to develop mathematical models, which allow simulating the behavior of the composition of composite on mechanical properties. Density variations were associated with differences in particle packing and particle wall roughness. The impact resistance of rPP/BB/CF was slightly higher in the 70/10/20 wt% composite. SEM micrographs of the ternary (70/20/10 wt%) showed stronger traces of decohesion, allowing higher water absorption and reducing impact resistance. The response surface methodology suggest that the increase in the variable “coconut fiber content” is responsible for improving the mechanical properties of the composite. The ternary composite (70/10/20 wt%) was best for replacement of virgin PP.

 

 

Keywords

Bege Bahia, recycling, waste, statistic analysis

References

1 Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chemical Engineering Journal, 405, 126683. http://dx.doi.org/10.1016/j.cej.2020.126683. PMid:32834764.

2 Barros, M. M., de Oliveira, M. F. L., da Conceição Ribeiro, R. C., Bastos, D. C., & de Oliveira, M. G. (2020). Ecological bricks from dimension stone waste and polyester resin. Construction & Building Materials, 232, 117252. http://dx.doi.org/10.1016/j.conbuildmat.2019.117252.

3 Kumar, R., Lakhani, R., & Tomar, P. (2018). A simple novel mix design method and properties assessment of foamed concretes with limestone slurry waste. Journal of Cleaner Production, 171, 1650-1663. http://dx.doi.org/10.1016/j.jclepro.2017.10.073.

4 de Farias, J. G., Cavalcante, R. C., Canabarro, B. R., Viana, H. M., Scholz, S., & Simão, R. A. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers, 165(1), 429-436. http://dx.doi.org/10.1016/j.carbpol.2017.02.042. PMid:28363569.

5 Chandgude, S., & Salunkhe, S. (2021). In state of art: mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polymer Composites, 42(6), 2678-2703. http://dx.doi.org/10.1002/pc.26045.

6 Ganesarajan, D., Simon, L., Tamrakar, S., Kiziltas, A., Mielewski, D., Behabtu, N., & Lenges, C. (2022). Hybrid composites with engineered polysaccharides for automotive lightweight. Composites Part C: Open Access, 7, 100222. http://dx.doi.org/10.1016/j.jcomc.2021.100222.

7 Patil, A., Patel, A., & Purohit, R. (2017). An overview of polymeric materials for automotive applications. Materials Today: Proceedings, 4(Suppl. 2, Pt A), 3807-3815. http://dx.doi.org/10.1016/j.matpr.2017.02.278.

8 Chagas, G. N., Barros, M. M., Leao, A. G., Ribeiro, R. C. C., & Bastos, D. C. (2021). Sustainable composite from polypropylene post-consumer and dimension stone waste. Brazilian Journal of Development, 7(3), 22298-222309. https://doi.org/10.34117/bjdv7n3-103.

9 Bakshi, P., Pappu, A., Patidar, R., Gupta, M. K., & Thakur, V. K. (2020). Transforming marble waste into high-performance, water-resistant, and thermally insulative hybrid polymer composites for environmental sustainability. Polymers, 12(8), 1781. http://dx.doi.org/10.3390/polym12081781. PMid:32784940.

10 Ou, R., Xie, Y., Wolcott, M. P., Sui, S., & Wang, Q. (2014). Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Materials & Design, 58, 339-345. http://dx.doi.org/10.1016/j.matdes.2014.02.018.

11 Paiva, L. B., Morales, A. R., & Guimarães, T. R. (2006). Mechanical properties of polypropylene and organophilic montmorillonite nanocomposites. Polímeros: Ciência e Tecnologia, 16(2), 136-140. http://dx.doi.org/10.1590/S0104-14282006000200014.

12 Wang, K., Addiego, F., Bahlouli, N., Ahzi, S., Rémond, Y., & Toniazzo, V. (2014). Impact response of recycled polypropylene-based composites undera wide range of temperature: effect of filler content and recycling. Composites Science and Technology, 95, 89-99. http://dx.doi.org/10.1016/j.compscitech.2014.02.014.

13 Borsoi, C., Berwig, K. H., Scienza, L. C., Zoppas, B. C. D. A., Brandalise, R. N., & Zattera, A. J. (2014). Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 17(1), 275-283. http://dx.doi.org/10.1590/S1516-14392013005000167.

14 Coelho, K. V. S., Líbano, E. V. D. G., Ramos Filho, F. G., Santos, S. F., Pereira, P. S. C., & Bastos, D. C. (2021). Develpoment of wood plastic composite with reduced water absorption. International Journal of Development Research, 11(2), 44547-44551. http://dx.doi.org/10.37118/ijdr.21116.02.2021.

15 Bakshi, P., Pappu, A., Bharti, D. K., & Patidar, R. (2021). Accelerated weathering performance of injection moulded PP and LDPE composites reinforced with calcium rich waste resources. Polymer Degradation & Stability, 192, 109694. http://dx.doi.org/10.1016/j.polymdegradstab.2021.109694.
 

6356f698a9539535a015d543 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections