A hybrid green composite for automotive industry
Gabriella Neto Chagas; Maiccon Martins Barros; Ariadne Gonçalves de Leão; Neyda de La Caridad Om Tapanes; Roberto Carlos da Conceição Ribeiro; Daniele Cruz Bastos
Abstract
Keywords
References
1 Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations.
2 Barros, M. M., de Oliveira, M. F. L., da Conceição Ribeiro, R. C., Bastos, D. C., & de Oliveira, M. G. (2020). Ecological bricks from dimension stone waste and polyester resin.
3 Kumar, R., Lakhani, R., & Tomar, P. (2018). A simple novel mix design method and properties assessment of foamed concretes with limestone slurry waste.
4 de Farias, J. G., Cavalcante, R. C., Canabarro, B. R., Viana, H. M., Scholz, S., & Simão, R. A. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites.
5 Chandgude, S., & Salunkhe, S. (2021). In state of art: mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components.
6 Ganesarajan, D., Simon, L., Tamrakar, S., Kiziltas, A., Mielewski, D., Behabtu, N., & Lenges, C. (2022). Hybrid composites with engineered polysaccharides for automotive lightweight.
7 Patil, A., Patel, A., & Purohit, R. (2017). An overview of polymeric materials for automotive applications.
8 Chagas, G. N., Barros, M. M., Leao, A. G., Ribeiro, R. C. C., & Bastos, D. C. (2021). Sustainable composite from polypropylene post-consumer and dimension stone waste.
9 Bakshi, P., Pappu, A., Patidar, R., Gupta, M. K., & Thakur, V. K. (2020). Transforming marble waste into high-performance, water-resistant, and thermally insulative hybrid polymer composites for environmental sustainability.
10 Ou, R., Xie, Y., Wolcott, M. P., Sui, S., & Wang, Q. (2014). Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition.
11 Paiva, L. B., Morales, A. R., & Guimarães, T. R. (2006). Mechanical properties of polypropylene and organophilic montmorillonite nanocomposites.
12 Wang, K., Addiego, F., Bahlouli, N., Ahzi, S., Rémond, Y., & Toniazzo, V. (2014). Impact response of recycled polypropylene-based composites undera wide range of temperature: effect of filler content and recycling.
13 Borsoi, C., Berwig, K. H., Scienza, L. C., Zoppas, B. C. D. A., Brandalise, R. N., & Zattera, A. J. (2014). Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites.
14 Coelho, K. V. S., Líbano, E. V. D. G., Ramos Filho, F. G., Santos, S. F., Pereira, P. S. C., & Bastos, D. C. (2021). Develpoment of wood plastic composite with reduced water absorption.
15 Bakshi, P., Pappu, A., Bharti, D. K., & Patidar, R. (2021). Accelerated weathering performance of injection moulded PP and LDPE composites reinforced with calcium rich waste resources.