Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and characterization of native and modified bitter yam starch grafted with acrylonitrile

Funmilayo Deborah Adewumi; Labunmi Lajide; Ezekiel Adewole; Jonanthan Abidemi Johnson

Downloads: 0
Views: 61


This analysis studied the effects modification on the properties of starch-based polymer grafted with acrylonitrile (copolymers). Starch was extracted from bitter yam. The starch was modified by heating the solution above 70 °C and then esterified with phthalic anhydride to produce a pregelatinized phthalated derivative. Acrylonitrile was grafted onto natural and pregelatinized phthalated starch at 120 °C using calcium oxide from snail shell as the initiator. The grafting reaction of starch with poly(acrylonitrile) and the phthalation of the starch were both confirmed by Fourier transform infrared (FTIR). Scanning electron microscopy analysis revealed changes in the morphology of the pregelatinized phthalated grafted copolymers. The X-ray diffractogram showed that native starch grafted copolymer displayed broad diffraction peaks (amorphous), but the phthalated bitter yam starch grafted with acrylonitrile had prominent diffraction peaks (crystalline). Thermogravimetry analysis revealed that the phthalated grafted copolymer has better thermal stability than the native grafted copolymer.




acrylonitrile, biopolymers, bitter yam, copolymers, phthalic anhydride


1 Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2115-2126. http://dx.doi.org/10.1098/rstb.2008.0311. PMid:19528059.

2 Ali, R. R., Rahman, W. A. W. A., Ibrahim, N. B., & Kasmani, R. M. (2013). Starch-based biofilms for green packaging. In R. Pogaku, A. Bono & C. Chu (Eds.), Developments in sustainable chemical and bioprocess technology (pp. 347-354). New York: Springer. http://dx.doi.org/10.1007/978-1-4614-6208-8_41.

3 Sadasivuni, K. K., Saha, P., Adhikari, J., Deshmukh, K., Ahamed, M. B., & Cabibihan, J.-J. (2020). Recent advances in mechanical properties of biopolymer composites: a review. Polymer Composites, 41(1), 32-59. http://dx.doi.org/10.1002/pc.25356.

4 Soroudi, A., & Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: a review. European Polymer Journal, 49(10), 2839-2858. http://dx.doi.org/10.1016/j.eurpolymj.2013.07.025.

5 Gironès, J., López, J. P., Mutjé, P., Carvalho, A. J. F., Curvelo, A. A. S., & Vilaseca, F. (2012). Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 72(7), 858-863. http://dx.doi.org/10.1016/j.compscitech.2012.02.019.

6 Chiellini, E., Chiellini, F., & Cinelli, P. (2002). Polymers from renewable resources. In G. Scott (Ed.), Degradable polymers: principles and applications (pp. 163-233). Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-017-1217-0_7.

7 Zhang, J.-F., & Sun, X. (2004). Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules, 5(4), 1446-1451. http://dx.doi.org/10.1021/bm0400022. PMid:15244463.

8 Araújo, M. A., Cunha, A. M., & Mota, M. (2004). Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials, 25(13), 2687-2693. http://dx.doi.org/10.1016/j.biomaterials.2003.09.093. PMid:14751755.

9 Hemamalini, T., & Dev, V. R. G. (2018). Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules, 106, 712-718. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.079. PMid:28823513.

10 Bergthaller, W. (2005). Starch in food - structure, function, and application. Stärke, 57(3-4), 173-174. http://dx.doi.org/10.1002/star.200590016.

11 Chiu, C.-W., & Solarek, D. (2009). Modification of starches. In J. BeMiller & R. Whistler (Eds.), Starch: chemistry and technology (pp. 629-655). Burlington: Academic Press. http://dx.doi.org/10.1016/B978-0-12-746275-2.00017-3.

12 Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179. http://dx.doi.org/10.1016/j.carbpol.2014.03.044. PMid:24815414.

13 Azwar, E., & Hakkarainen, M. (2012). Tuning the mechanical properties of tapioca starch by plasticizers, inorganic fillers and agrowaste-based fillers. International Scholarly Research Notices, 2012, 463298.

14 Sandhu, K. S., Kaur, M., Singh, N., & Lim, S.-T. (2008). A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. Lebensmittel-Wissenschaft + Technologie, 41(6), 1000-1010. http://dx.doi.org/10.1016/j.lwt.2007.07.012.

15 Shi, L., Cheng, F., Zhu, P.-X., & Lin, Y. (2015). Physicochemical changes of maize starch treated by ball milling with limited water content. Stärke, 67(9-10), 772-779. http://dx.doi.org/10.1002/star.201500026.

16 Fan, Y., & Picchioni, F. (2020). Modification of starch: a review on the application of “green” solvents and controlled functionalization. Carbohydrate Polymers, 241, 116350. http://dx.doi.org/10.1016/j.carbpol.2020.116350. PMid:32507175.

17 Fringant, C., Desbrières, J., & Rinaudo, M. (1996). Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer, 37(13), 2663-2673. http://dx.doi.org/10.1016/0032-3861(96)87626-9.

18 Thirathumthavorn, D., & Charoenrein, S. (2006). Thermal and pasting properties of native and acid-treated starches derivatized by 1-octenyl succinic anhydride. Carbohydrate Polymers, 66(2), 258-265. http://dx.doi.org/10.1016/j.carbpol.2006.03.016.

19 Bao, J., Xing, J., Phillips, D. L., & Corke, H. (2003). Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. Journal of Agricultural and Food Chemistry, 51(8), 2283-2287. http://dx.doi.org/10.1021/jf020371u. PMid:12670171.

20 Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2013). Synthesis and characterization of maleic anhydride esterified corn starch by the dry method. International Journal of Biological Macromolecules, 62, 241-247. http://dx.doi.org/10.1016/j.ijbiomac.2013.08.032. PMid:23999015.

21 Yang, C., Lin, Y., Cheng, F., Zhou, M., Tan, L., & Zhu, P. (2019). Synthesis and characterization of corn starch phthalate by a semidry method. Stärke, 71(9-10), 1800315. http://dx.doi.org/10.1002/star.201800315.

22 Finch, C. A. (1989). Modified starches: properties and uses edited by O. B. Wurzburg, CRC Press, Boca Raton, Florida, 1986. pp. vi + 277, price £101.50. ISBN 0-8493-5964-3. British Polymer Journal, 21(1), 87-88. http://dx.doi.org/10.1002/pi.4980210117.

23 Mostafa, K. M. (1995). Graft polymerization of methyl acrylic acid on starch and hydrolyzed starches. Polymer Degradation & Stability, 50(2), 189-194. http://dx.doi.org/10.1016/0141-3910(95)00147-6.

24 Athawale, V. D., & Rathi, S. C. (1997). Effect of the chain length of the alkyl group of alkyl methacrylates on graft polymerization onto starch using ceric ammonium nitrate as initiator. European Polymer Journal, 33(7), 1067-1071. http://dx.doi.org/10.1016/S0014-3057(96)00294-7.

25 Zhang, Z., Chen, P., Du, X., Xue, Z., Chen, S., & Yang, B. (2014). Effects of amylose content on property and microstructure of starch-graft-sodium acrylate copolymers. Carbohydrate Polymers, 102, 453-459. http://dx.doi.org/10.1016/j.carbpol.2013.11.027. PMid:24507305.

26 El-Rafie, M. H., Zahran, M. K., El-Tahlawy, K. F., & Hebeish, A. (1995). A comparative study of the polymerization of acrylic acid with native and hydrolyzed maize starches using a potassium bromate-thiourea dioxide redox initiation system. Polymer Degradation & Stability, 47(1), 73-85. http://dx.doi.org/10.1016/0141-3910(94)00093-N.

27 Cho, Y. B., Seo, G., & Chang, D. R. (2009). Transesterification of tributyrin with methanol over calcium oxide catalysts prepared from various precursors. Fuel Processing Technology, 90(10), 1252-1258. http://dx.doi.org/10.1016/j.fuproc.2009.06.007.

28 Shujun, W., Jinglin, Y., Wenyuan, G., Hongyan, L., & Peigen, X. (2006). New starches from traditional Chinese medicine (TCM) - Chinese yam (Dioscorea opposita Thunb.) cultivars. Carbohydrate Research, 341(2), 289-293. http://dx.doi.org/10.1016/j.carres.2005.10.022. PMid:16325789.

29 Surini, S., Putri, K. S. S., & Anwar, E. (2014). Preparation and characterization of pregelatinized cassava starch Phthalate as a pH-sensitive polymer for enteric coated tablet formulation. International Journal of Pharmacy and Pharmaceutical Sciences, 6(Suppl. 3), 17-23.

30 Hadiyanto, H., Lestari, S. P., & Widayat, W. (2016). Preparation and characterization of Anadara Granosa shells and CaCO3 as heterogeneous catalyst for biodiesel production. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 21-26. http://dx.doi.org/10.9767/bcrec.11.1.402.21-26.

31 Pourjavadi, A., Zohuriaan-Mehr, M. J., Ghasempoori, S. N., & Hossienzadeh, H. (2007). Modified CMC. V. Synthesis and superswelling behaviour of hydrolysed CMC-g-PAN Hydrogel. Journal of Applied Polymer Science, 103(2), 877-883. http://dx.doi.org/10.1002/app.25224.

32 Simi, C. K., & Abraham, T. E. (2007). Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess and Biosystems Engineering, 30(3), 173-180. http://dx.doi.org/10.1007/s00449-007-0112-5. PMid:17278045.

33 Yaacob, B., Amin, M. C. I. M., Hashim, K., & Bakar, B. A. (2011). Optimization of reaction conditions for carboxymethylated sago starch. Iranian Polymer Journal, 20(3), 195-204. Retrieved in 2022, December 8, from https://www.sid.ir/FileServer/JE/813201112903.pdf

34 Adewumi, F. D., Lajide, L., Adetuyi, A. O., & Ayodele, O. (2020). Functional properties of three native starches and their modified derivatives. Slovak Journal of Food Sciences, 14, 682-691. http://dx.doi.org/10.5219/1232.

35 Jyothi, A. N., Pillai, S. S., Aravind, M., Salim, S. A., & Kuzhivilayil, S. J. (2018). Cassava starch-graft-poly(acrylonitrile)-coated urea fertilizer with sustained release and water retention properties. Advances in Polymer Technology, 37(7), 2687-2694. http://dx.doi.org/10.1002/adv.21943.

36 Abdulganiyu, U., Saminu, M. M., & Aminu, M. (2017). Graft copolymerization and characterization of styrene with chitosan via radical polymerization. ChemSearch Journal, 8(1), 56-63. Retrieved in 2022, December 8, from https://www.ajol.info/index.php/csj/article/view/158485

64340ed3a953954f8d5143e5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections