Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220019
Polímeros: Ciência e Tecnologia
Original Article

Effect of non-thermal argon plasma on the shear strength of adhesive systems

Isabella de Almeida Guimarães Passos; Juliana das Neves Marques; João Victor Frazão Câmara; Renata Antoun Simão; Maíra do Prado; Gisele Damiana da Silveira Pereira

Downloads: 1
Views: 580

Abstract

This study evaluated the influence of non-thermal argon plasma applied to dentin on the shear strength of two adhesive systems. Ninety tooth fragments were embedded in epoxy resin and distributed into experimental groups (n=15): G1 and G4 - adhesive systems applied according to the manufacturers’ instructions; G2 and G5 - dentin treated with non-thermal argon plasma for 30 seconds before hybridization; G3 and G6 - dentin treated with non-thermal argon plasma for 30 seconds after hybridization. Cylinders were made with composite resin in the adhesive area, and the specimens were submitted to the shear strength test. Higher values were observed when applying the plasma treatment after hybridization (G1: 26.51 MPa, G2: 29.22 MPa, G3: 30.27 MPa, G4: 22.66 MPa, G5: 28.33 MPa, G6: 29.32 MPa). The treatment with non-thermal argon plasma significantly increased the shear strength values regardless of the application time.

 

 

Keywords

argon plasma, non-thermal plasma, dentin bonding agents, dentin, shear strength

References

1 Blatz, M. B., Vonderheide, M., & Conejo, J. (2018). The effect of resin bonding on long-term success of high-strength ceramics. Journal of Dental Research, 97(2), 132-139. http://dx.doi.org/10.1177/0022034517729134. PMid:28876966.

2 Tjäderhane, L. (2015). Dentin bonding: can we make it last? Operative Dentistry, 40(1), 4-18. http://dx.doi.org/10.2341/14-095-BL. PMid:25615637.

3 Tjäderhane, L., Nascimento, F. D., Breschi, L., Mazzoni, A., Tersariol, I. L. S., Geraldeli, S., Tezvergil-Mutluay, A., Carrilho, M., Carvalho, R. M., Tay, F. R., & Pashley, D. H. (2013). Strategies to prevent hydrolytic degradation of the hybrid layer-A review. Dental Materials, 29(10), 999-1011. http://dx.doi.org/10.1016/j.dental.2013.07.016. PMid:23953737.

4 Mazzoni, A., Tjäderhane, L., Checchi, V., Di Lenarda, R., Salo, T., Tay, F. R., Pashley, D. H., & Breschi, L. (2015). Role of dentin MMPs in caries progression and bond stability. Journal of Dental Research, 94(2), 241-251. http://dx.doi.org/10.1177/0022034514562833. PMid:25535202.

5 Breschi, L., Maravic, T., Cunha, S. R., Comba, A., Cadenaro, M., Tjäderhane, L., Pashley, D. H., Tay, F. R., & Mazzoni, A. (2018). Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Dental Materials, 34(1), 78-96. http://dx.doi.org/10.1016/j.dental.2017.11.005. PMid:29179971.

6 Abreu, J. L. B., Prado, M., Simão, R. A., Silva, E. M., & Dias, K. R. H. C. (2016). Effect of non-thermal argon plasma on bond strength of a self-etch adhesive system to NaOCl-Treated Dentin. Brazilian Dental Journal, 27(4), 446-451. http://dx.doi.org/10.1590/0103-6440201600914. PMid:27652709.

7 Henningsen, A., Smeets, R., Heuberger, R., Jung, O. T., Hanken, H., Heiland, M., Cacaci, C., & Precht, C. (2018). Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. European Journal of Oral Sciences, 126(2), 126-134. http://dx.doi.org/10.1111/eos.12400. PMid:29336070.

8 Cha, S., & Park, Y.-S. (2014). Plasma in dentistry. Clinical Plasma Medicine, 2(1), 4-10. http://dx.doi.org/10.1016/j.cpme.2014.04.002. PMid:27030818.

9 Xiang, D., & Lin, H. (2020). Research progress in surface bonding pretreatment of dental zirconia ceramics. Zhonghua Kou Qiang Yi Xue Za Zhi, 55(5), 348-352. http://dx.doi.org/10.3760/cma.j.cn112144-20191128-00426. PMid:32392979.

10 Chen, M., Zhang, Y., Sky Driver, M., Caruso, A. N., Yu, Q., & Wang, Y. (2013). Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dental Materials, 29(8), 871-880. http://dx.doi.org/10.1016/j.dental.2013.05.002. PMid:23755823.

11 Chen, M., Zhang, Y., Yao, X., Li, H., Yu, Q., & Wang, Y. (2012). Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization. Dental Materials, 28(12), 1232-1239. http://dx.doi.org/10.1016/j.dental.2012.09.005. PMid:23018084.

12 Pereira, G. D., Paulillo, L. A. M. S., De Goes, M. F., & Dias, C. T. S. (2001). How wet should dentin be? Comparison of methods to remove excess water during moist bonding. The Journal of Adhesive Dentistry, 3(3), 257-264. PMid:11803713.

13 Santos, P. H., Sabóia, V. P. A., Maeda, F. A., Pavan, S., & Sinhoreti, M. A. C. (2004). Shear bond strength of two dentin adhesive after collagen removal. Revista de Odontologia de Araçatuba, 25(2), 38-42. Retrieved in 2022, March 8, from https://www.apcdaracatuba.com.br/revista/v25n2/resistenciaaocisalhamento.pdf

14 Braga, R. R., & Fronza, B. M. (2020). The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: a literature review. Dental Materials Journal, 39(1), 62-68. http://dx.doi.org/10.4012/dmj.2019-293. PMid:31723068.

15 Dogan, S., Raigrodski, A. J., Zhang, H., & Mancl, L. A. (2017). Prospective cohort clinical study assessing the 5-year survival and success of anterior maxillary zirconia-based crowns with customized zirconia copings. The Journal of Prosthetic Dentistry, 117(2), 226-232. http://dx.doi.org/10.1016/j.prosdent.2016.07.019. PMid:27765396.

16 Burrow, M. F., Harada, N., Kitasako, Y., Nikaido, T., & Tagami, J. (2005). Seven-year dentin bond strengths of a total- and self-etch system. European Journal of Oral Sciences, 113(3), 265-270. http://dx.doi.org/10.1111/j.1600-0722.2005.00213.x. PMid:15953253.

17 Tay, F. R., Sano, H., Carvalho, R., Pashley, E. L., & Pashley, D. H. (2000). An ultrastructural study of the influence of acidity of self-etching primers and smear layer thickness on bonding to intact dentin. The Journal of Adhesive Dentistry, 2(2), 83-98. PMid:11317404.

18 Yamauchi, S., Wang, X., Egusa, H., & Sun, J. (2020). High-performance dental adhesives containing an ether-based monomer. Journal of Dental Research, 99(2), 189-195. http://dx.doi.org/10.1177/0022034519895269. PMid:31861961.

19 Uno, S., & Finger, W. J. (1995). Function of the hybrid zone as a stress-absorbing layer in resin-dentin bonding. Quintessence International, 26(10), 733-738. PMid:8935117.

20 Castro, E. F., Azevedo, V. L. B., Nima, G., Andrade, O. S., Dias, C. T. S., & Giannini, M. (2020). Adhesion, mechanical properties, and microstructure of resin-matrix CAD-CAM ceramics. The Journal of Adhesive Dentistry, 22(4), 421-431. http://dx.doi.org/10.3290/j.jad.a44874. PMid:32666069.

21 Zhang, L., Wang, D.-Y., Fan, J., Li, F., Chen, Y.-J., & Chen, J.-H. (2014). Stability of bonds made to superficial vs. deep dentin, before and after thermocycling. Dental Materials, 30(11), 1245-1251. http://dx.doi.org/10.1016/j.dental.2014.08.362. PMid:25182371.

22 Prado, M., Silva, E. M., Marques, J. N., Gonzalez, C. B., & Simão, R. A. (2017). The effects of non-thermal plasma and conventional treatments on the bond strength of fiber posts to resin cement. Restorative Dentistry & Endodontics, 42(2), 125-133. http://dx.doi.org/10.5395/rde.2017.42.2.125. PMid:28503478.

23 Zhang, F., Inokoshi, M., Batuk, M., Hadermann, J., Naert, I., Van Meerbeek, B., & Vleugels, J. (2016). Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dental Materials, 32(12), e327-e337. http://dx.doi.org/10.1016/j.dental.2016.09.025. PMid:27697332.

24 Kim, J.-H., Lee, M.-A., Han, G.-J., & Cho, B.-H. (2014). Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontologica Scandinavica, 72(1), 1-12. http://dx.doi.org/10.3109/00016357.2013.795660. PMid:24354926.

25 Wei, Y.-R., Wang, X.-D., Zhang, Q., Li, X.-X., Blatz, M. B., Jian, Y.-T., & Zhao, K. (2016). Clinical performance of anterior resin-bonded fixed dental prostheses with different framework designs: a systematic review and meta-analysis. Journal of Dentistry, 47, 1-7. http://dx.doi.org/10.1016/j.jdent.2016.02.003. PMid:26875611.

26 Münchow, E. A., & Bottino, M. C. (2017). Recent advances in adhesive bonding - the role of biomolecules, nanocompounds, and bonding strategies in enhancing resin bonding to dental substrates. Current Oral Health Reports, 4(3), 215-227. http://dx.doi.org/10.1007/s40496-017-0146-y. PMid:29177123.

27 Awad, M. M., Alhalabi, F., Alshehri, A., Aljeaidi, Z., Alrahlah, A., Özcan, M., & Hamama, H. H. (2021). Effect of non-thermal atmospheric plasma on micro-tensile bond strength at adhesive/dentin interface: a systematic review. Materials (Basel), 14(4), 1026. http://dx.doi.org/10.3390/ma14041026. PMid:33671580.

28 Ayres, A. P., Freitas, P. H., De Munck, J., Vananroye, A., Clasen, C., Dias, C. T. S., Giannini, M., & Van Meerbeek, B. (2018). Benefits of nonthermal atmospheric plasma treatment on dentin adhesion. Operative Dentistry, 43(6), E288-E299. http://dx.doi.org/10.2341/17-123-L. PMid:30457947.

29 Ayres, A. P., Bonvent, J. J., Mogilevych, B., Soares, L. E. S., Martin, A. A., Ambrosano, G. M., Nascimento, F. D., Van Meerbeek, B., & Giannini, M. (2018). Effect of non-thermal atmospheric plasma on the dentin-surface topography and composition and on the bond strength of a universal adhesive. European Journal of Oral Sciences, 126(1), 53-65. http://dx.doi.org/10.1111/eos.12388. PMid:29130564.

30 Dong, X., Li, H., Chen, M., Wang, Y., & Yu, Q. (2015). Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clinical Plasma Medicine, 3(1), 10-16. http://dx.doi.org/10.1016/j.cpme.2015.05.002. PMid:26273561.

31 Prado, M., Roizenblit, R. N., Pacheco, L. V., Barbosa, C. A. M., Lima, C. O., & Simão, R. A. (2016). Effect of argon plasma on root dentin after use of 6% NaOCl. Brazilian Dental Journal, 27(1), 41-45. http://dx.doi.org/10.1590/0103-6440201600486. PMid:27007344.

32 Ritts, A. C., Li, H., Yu, Q., Xu, C., Yao, X., Hong, L., & Wang, Y. (2010). Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. European Journal of Oral Sciences, 118(5), 510-516. http://dx.doi.org/10.1111/j.1600-0722.2010.00761.x. PMid:20831586.

33 Dong, X., Chen, M., Wang, Y., & Yu, Q. (2014). A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clinical Plasma Medicine, 2(1), 11-16. http://dx.doi.org/10.1016/j.cpme.2014.04.001. PMid:25267936.

34 Dong, X., Ritts, A. C., Staller, C., Yu, Q., Chen, M., & Wang, Y. (2013). Evaluation of plasma treatment effects on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional surface areas. European Journal of Oral Sciences, 121(4), 355-362. http://dx.doi.org/10.1111/eos.12052. PMid:23841788.
 

62c5e60fa95395340b2c23a3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections