Polymer composite produced with Brazil nut residues and high impact polystyrene
Jefferson Renan Santos da Silva; João Christian Paixão Fonseca; Thais da Silva Santos; Josiel Bruno de Oliveira; Thiago Monteiro Maquiné; Bruno Mello de Freitas; Raimundo Nonato Alves Silva; Nayra Reis do Nascimento; João Martins da Costa; Roger Hoel Bello; José Costa de Macedo Neto
Abstract
Keywords
References
1 Nogueira, I. M. S., Lahr, F. A. R., & Giacon, V. M. (2018). Development and characterization of particleboards manufactured with the residue of Brazilian nut fruit and castor oil polyurethane resin.
2 Souza, T. A. Fo., Pedroso, E. A., & Paes-de-Souza, M. (2011). Produtos Florestais Não-Madeiráveis (PFNMs) da Amazônia: uma visão autóctone da cadeia-rede da castanha-da-amazônia no estado de Rondônia.
3 Instituto Brasileiro de Geografia e Estatística - IBGE. (2020).
4 Bouvie, L., Bortella, D. R., Porto, P. A. O., Silva, A. C., & Leonel, S. (2016). Physico-chemical characterization of fruit’s castanheira of Brazil.
5 Mansor, M. R., Mastura, M. T., Sapuan, S. M., & Zainudin, A. Z. (2019). The environmental impact of natural fiber composites through life cycle assessment analysis. In M. Jawaid, M. Thariq & N. Saba (Eds.),
6 Brasil.
7 Borsoi, C., Scienza, L. C., Zattera, A. J., & Angrizani, C. C. (2011). Obtainment and characterization of composites using polystyrene as matrix and fiber waste from cotton textile industry as reinforcement.
8 Enríquez‑Medrano, F. J., Acuña, P., & Morales, G. (2020). Synthesis strategies in the preparation of high impact polystyrene with diferent type of particles as the dispersed phase, towards a balance between impact strength and gloss.
9
10 Vianna, W. L., Correa, C. A., & Razzino, C. A. (2004). The effects of the high impact polystyrene morphology on the properties of wood-plastic composites.
11 Petrechen, G. P., & Ambrósio, J. D. (2016). Preparation and mechanics characterization of lignocellulosic residues of Brazil nut (bertholletia excelsa) seed husks reinforced polypropylene composites. In
12 Zafar, F. M., & Siddiqui, M. A. (2018). Raw natural fiber reinforced polystyrene composites: effect of fiber size and loading.
13 Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A., & Zaman, H. M. D. K. (2009). The effect of compatibilising agent and surface modification on the physical properties of short Pineapple Leaf Fibre (PALF) reinforced High Impact Polystyrene (HIPS) composites.
14 Saber, E., El-Sayed, N. S., Nagiebb, Z. A., Ismail, A., & Kamel, S. (2017). Characterization of plastic composite based on HIPS loaded with bagasse.
15 Kieling, A. C., Santana, G. P., Santos, M. C., Macedo, J. C. No., Pino, G. G., Santos, M. D., Duvoisin, S. Jr., & Panzera, T. H. (2021). Wood-plastic composite based on recycled polypropylene and Amazonian tucumã (Astrocaryum aculeatum) endocarp waste.
16 AZO Materials. (2001).
17 Vieira, D. S., & Coelho, N. A. (2020). Utilização do método dos elementos finitos no estudotérmico de elementos simples de concreto.
18 Pawlak, Z., & Pawlak, A. S. (1997). A review of infrared spectra from wood and wood components following treatment with liquid ammonia and solvated electrons in liquid ammonia.
19 Masood, M. T., Heredia-Guerrero, J. A., Ceseracciu, L., Palazon, F., Athanassiou, A., & Bayer, I. S. (2017). Superhydrophobic high impact polystyrene (HIPS) nanocomposites withwear abrasion resistance.
20 Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres.
21 Rovere, J., Correa, C. A., Grassi, V. G., & Pizzol, M. F. (2008). Caracterização morfológica do poliestireno de alto impacto (HIPS).
22 Tobón, A. E. D., Chaparro, W. A. A., & Rivera, W. G. (2014). Improvement of properties of tension in WPC of LDPE: HIPS/natural fiber through crosslinking with DCP.
23 D’Almeida, J. R. M. (1987). Propriedades mecânicas de fibras de juta.
24 Joseph, K., Medeiros, E. S., & Carvalho, L. H. (1999). Tensile properties of unsaturated polyester composites reinforced by short sisal fibers.
25 Medeiros, V. N. (2016).
26 Grassi, V. G., Forte, M. M. C., & Pizzol, M. F. (2001). Morphologic aspects and structure-properties relations of high impact polystyrene.
27 Rabelo, M., & Paoli, M.-A. (2013).
28 Maestrini, C., Monti, L., & Kausch, H. H. (1996). Influence of particle-craze interactions on the sub-critical fracture of core-shell HIPS.
29 Argon, A. S. (2011). Craze initiation in glassy polymers - revisited.
30 Ebewele, R. O. (2000).
31 Zhu, L. D., Yang, H. Y., Cai, G. D., Zhou, C., Wu, G. F., Zhang, M. Y., Gao, G. H., & Zhang, H. X. (2013). Submicrometer-sized rubber particles as “craze-bridge” for toughening polystyrene/high-impact polystyrene.
32 Bhilat, H., Hachim, A., Salmi, H., & Had, K. (2020). Experimental and numerical investigation of the influence of temperature on the fracture behavior of high impact polystyrene evaluated by the J-integral approach using multiple specimen method.
33 Şahin, T., Sınmazçelik, T., & Şahin, S. (2007). The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS).
34 Hasegawa, H., Ohta, T., Ito, K., & Yokoyama, H. (2017). Stress-strain measurement of ultra-thin polystyrene films: film thickness and molecular weight dependence of crazing stress.
35 Capri, M. R., Santana, L. C., & Mulinari, D. R. (2016). Avaliação das propriedades térmicas dos compósitos de polipropileno reforçados com fibras da palmeira. In
36 Machado, C. E. V., Costa, A. C. A., Cardoso, R. C., Caetano, F. P., Lopes, J. A., Cury, A. L., Rodrigues, L. M., & Cabral, R. F. (2017). Study of mechanical and thermal properties of high impact polystyrene.
37 Cordeiro, C. C., Arroyo, P. A., Santos, D. G., Pedrini, C. No., Muniz, E. C., Radovanovic, E., & Rubira, A. F. (2005). Blendas de poliestireno de alto impacto pós consumo com um resíduo plástico gerado em usina de reciclagem. In
38 Agung, E. H., Sapuan, S. M., Ahmad, M. M. H. M., Zaman, H. M. D. K., & Mustofa, U. (2011). Differential scanning calorimetry (DSC) analysis of abaca fibre (Musa textile Nee) reinforced high impact polystyrene (HIPS) composites. In P. Wang, L. Ai, Y. Li, X. Sang & J. Bu (Eds.),
39 Saeed, U., Dawood, U., & Ali, A. M. (2021). Cellulose triacetate fiber-reinforced polystyrene composite.
40 Scussel, V. M., Manfio, D., Savi, G. D., & Moecke, E. H. S. (2014). Stereoscopy and scanning electron microscopy of Brazil nut (Bertholletia excelsa H.B.K.) Shell, brown skin, and edible part: part one—healthy nut.
41 Scussel, V. M., Manfio, D., Savi, G. D., & Moecke, E. H. S. (2014). Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two—surface sound nut fungi spoilage susceptibility.
42 Liu, K., Takagi, H., & Yang, Z. M. (2011). Effect of lumen size on transverse thermal conductivity of unidirectional natural fiber-polymer composite via finite element method.
43 Zach, J., Slávik, R., & Novák, V. (2016). Investigation of the process of heat transfer in the structure of thermal insulation materials based on natural fibres.
44 Ju, L., Yang, J., Hao, A., Daniel, J., Morales, J., Nguyen, S., Andrei, P., Liang, R., Hellstrom, E., & Xu, C. (2018). A hybrid ceramic-polymer composite fabricated by co-curing lay-up process for a strong bonding and enhanced transient thermal protection.
45 Sottos, N. R., & Swindeman, M. (1995). Transient thermal deformations of the interphasein polymer composites.