Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Latex and natural rubber: recent advances for biomedical applications

Karina Luzia Andrade; Heloisa Ramlow; Juliana Ferreira Floriano; Emanoelle Diz Acosta; Fabrício Luiz Faita; Ricardo Antonio Francisco Machado

Downloads: 1
Views: 608


Recently, latex (NRL) and natural rubber (NR) from Hevea brasiliensis have emerged as promising biomaterials from renewable sources for biomedical applications. Although some attempts at commercial applications have been made, there is a need to comprehensively document the state-of-the-art of these biopolymers for biomedical applications and regenerative medicine. Here we present the recent advances in the development of NRL and NR as biomedical materials with potential properties including biocompatibility and biodegradability. Due to the angiogenic properties of NRL and NR, well-defined functional materials can be used for drug delivery systems (oral/transdermal), scaffolds for skin and bone regeneration, and dressings for wound healing. The incorporation of drugs, nanoparticles, cells, and others into NRL and NR polymer chains offers a wide range of applications such as dressings with antimicrobial activity and sustained release systems. Concluding remarks on the growth of these biomaterials for biomedical applications and regenerative medicine were discussed.




drug delivery system, Hevea brasiliensis, scaffolds, tissue repair, wound dressing


1 Neves-Junior, W. F. P., Ferreira, M., Alves, M. C. O., Graeff, C. F. O., Mulato, M., Coutinho-Netto, J., & Bernardes, M. S. (2006). Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Brazilian Journal of Physics, 36(2b), 586-591. http://dx.doi.org/10.1590/S0103-97332006000400021.

2 Ferreira, M., Mendonça, R. J., Coutinho-Netto, J., & Mulato, M. (2009). Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Brazilian Journal of Physics, 39(3), 564-569. http://dx.doi.org/10.1590/S0103-97332009000500010.

3 Borges, F. A., Barros, N. R., Garms, B. C., Miranda, M. C. R., Gemeinder, J. L. P., Ribeiro-Paes, J. T., Silva, R. F., Toledo, K. A., & Herculano, R. D. (2017). Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 134(39), 45321. http://dx.doi.org/10.1002/app.45321.

4 Miranda, M. C. R., Prezotti, F. G., Borges, F. A., Barros, N. R., Cury, B. S. F., Herculano, R. D., & Cilli, E. M. (2017). Porosity effects of natural latex (Hevea brasiliensis) on release of compounds for biomedical applications. Journal of Biomaterials Science. Polymer Edition, 28(18), 2117-2130. http://dx.doi.org/10.1080/09205063.2017.1377024. PMid:28875763.

5 Rosa, S. S. R. F., Rosa, M. F. F., Fonseca, M. A. M., Luz, G. V. S., Avila, C. F. D., Domínguez, A. G. D., Dantas, A. G. D., & Richter, V. B. (2019). Evidence in practice of tissue healing with latex biomembrane: integrative review. Journal of Diabetes Research, 2019, 7457295. http://dx.doi.org/10.1155/2019/7457295. PMid:30944828.

6 Floriano, J. F., Capuano, F., No., Mota, L. S. L. S., Furtado, E. L., Ferreira, R. S., Barraviera, B., Gonçalves, P. J., Almeida, L. M., Borges, F. A., Herculano, R. D., & Graeff, C. F. O. (2016). Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomedical Physics & Engineering Express, 2(4), 045007. http://dx.doi.org/10.1088/2057-1976/2/4/045007.

7 Zimmermann, M., Raiser, A. G., Barbosa, A. L. T., Novosad, D., Steffen, R. P. B., Lukarsewsk, R., Silva, M. S., Lindinger, R., & Pastore, F., Jr. (2007). Biocompatibility and resistance test of latex membranes in dogs. Ciência Rural, 37(6), 1719-1723. http://dx.doi.org/10.1590/S0103-84782007000600033.

8 Guerra, N. B., Pegorin, G. S., Boratto, M. H., Barros, N. R., Graeff, C. F. O., & Herculano, R. D. (2021). Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Materials Science and Engineering C, 126, 112126. http://dx.doi.org/10.1016/j.msec.2021.112126. PMid:34082943.

9 Rahimi, A., & Mashak, A. (2013). Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plastics, Rubber and Composites, 42(6), 223-230. http://dx.doi.org/10.1179/1743289811Y.0000000063.

10 Kotake, B. G. S., Gonzaga, M. G., Coutinho-Netto, J., Ervolino, E., Figueiredo, F. A. T., & Issa, J. P. M. (2018). Bone repair of critical-sized defects in Wistar rats treated with autogenic, allogenic or xenogenic bone grafts alone or in combination with natural latex fraction F1. Biomedical Materials, 13(2), 025022. http://dx.doi.org/10.1088/1748-605X/aa9504. PMid:29053112.

11 Barros, N. R., Chagas, P. A. M., Borges, F. A., Gemeinder, J. L. P., Miranda, M. C. R., Garms, B. C., & Herculano, R. D. (2015). Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. Journal of Materials, 2015, 807948. http://dx.doi.org/10.1155/2015/807948.

12 Carvalho, F. A., Uchina, H. S., Borges, F. A., Oyafuso, M. H., Herculano, R. D., Gremião, M. P. D., & Santos, A. G. (2018). Natural membranes of Hevea brasiliensis latex as delivery system for Casearia sylvestris leaf components. Revista Brasileira de Farmacognosia, 28(1), 102-110. http://dx.doi.org/10.1016/j.bjp.2017.10.007.

13 Mrue, F., Coutinho-Netto, J., Ceneviva, R., Lachat, J. J., Thomazini, J. A., & Tambelini, H. (2004). Evaluation of the biocompatibility of a new biomembrane. Materials Research, 7(2), 277-283. http://dx.doi.org/10.1590/S1516-14392004000200010.

14 Ribeiro, J. A., Rosa, S. R. F., Leite, C. R. M., Vasconcelos, C. L., & Soares, J. M. (2017). Development assessment of natural latex membranes: a new proposal for the treatment of amblyopia. Materials Research, 20(3), 653-660. http://dx.doi.org/10.1590/1980-5373-mr-2016-0355.

15 Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering C, 92, 969-982. http://dx.doi.org/10.1016/j.msec.2018.08.004. PMid:30184827.

16 Abraham, E., Elbi, P. A., Deepa, B., Jyotishkumar, P., Pothen, L. A., Narine, S. S., & Thomas, S. (2012). X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polymer Degradation & Stability, 97(11), 2378-2387. http://dx.doi.org/10.1016/j.polymdegradstab.2012.07.028.

17 George, A. M., Peddireddy, S. P. R., Thakur, G., & Rodrigues, F. C. (2020). Biopolymer-based scaffolds: development and biomedical applications. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W. Deng, N. K. Dubey & K. Majumder (Eds.), Biopolymer-based formulations: biomedical and food applications (pp. 717-749). UK: Elsevier. http://dx.doi.org/10.1016/B978-0-12-816897-4.00029-1.

18 Schmalz, G., & Galler, K. M. (2017). Biocompatibility of biomaterials: lessons learned and considerations for the design of novel materials. Dental Materials, 33(4), 382-393. http://dx.doi.org/10.1016/j.dental.2017.01.011. PMid:28236437.

19 Rogero, S. O., Lugão, A. B., Ikeda, T. I., & Cruz, Á. S. (2003). Teste in vitro de citotoxicidade: estudo comparativo entre duas metodologias. Materials Research, 6(3), 317-320. http://dx.doi.org/10.1590/S1516-14392003000300003.

20 International Standard Organization – ISO. (2003). ISO 10993-1: biological evaluation of medical devices, part 1: evaluation and testing. Silver Spring: ISO.

21 International Standard Organization – ISO. (2009). ISO 10993-5: biological evaluation of medical devices, part 5: tests for in vitro cytotoxicity. Silver Spring: ISO.

22 Floriano, J. F., Mota, L. S. L. S., Furtado, E. L., Rossetto, V. J. V., & Graeff, C. F. O. (2014). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science. Materials in Medicine, 25(2), 461-470. http://dx.doi.org/10.1007/s10856-013-5089-9. PMid:24202915.

23 Furuya, M., Shimono, N., & Okamoto, M. (2017). Fabrication of biocomposites composed of natural rubber latex and bone tissue derived from MC3T3-E1 mouse preosteoblastic cells. Nanocomposites, 3(2), 76-83. http://dx.doi.org/10.1080/20550324.2017.1352111.

24 Qamarina, M. S. N., Mok, K. L., Tajul, A. Y., & Fadilah, R. N. (2010). Minimising chemical hazards to improve biocompatibility of natural rubber latex products. Journal of Rubber Research, 13(4), 240-256. Retrieved in 2022, January 13, from https://www.researchgate.net/publication/287462426_Minimising_chemical_hazards_to_improve_biocompatibility_of_natural_rubber_latex_products

25 Balaji, A. B., Pakalapati, H., Khalid, M., Walvekar, R., & Siddiqui, H. (2017). Natural and synthetic biocompatible and biodegradable polymers. In N. G. Shimpi (Ed.), Biodegradable and biocompatible polymer composites processing, properties and applications (pp. 3-32). UK: Woodhead Publishing.

26 Andler, R. (2020). Bacterial and enzymatic degradation of poly(cis-1,4-isoprene) rubber: novel biotechnological applications. Biotechnology Advances, 44, 107606. http://dx.doi.org/10.1016/j.biotechadv.2020.107606. PMid:32758514.

27 Nanthini, J., & Sudesh, K. (2017). Biodegradation of natural rubber and natural rubber products by Streptomyces Sp. Strain CFMR 7. Journal of Polymers and the Environment, 25(3), 606-616. http://dx.doi.org/10.1007/s10924-016-0840-1.

28 Nowakowski, P., Kuśnierz, S., Sosna, P., Mauer, J., & Maj, D. (2020). Disposal of personal protective equipment during the covid-19 pandemic is a challenge for waste collection companies and society: a case study in poland. Resources, 9(10), 1196. http://dx.doi.org/10.3390/resources9100116.

29 Tsuchii, A. (1995). Microbial degradation of natural rubber. Progress in Industrial Microbiology, 32, 177-187. http://dx.doi.org/10.1016/S0079-6352(06)80032-9.

30 Supanakorn, G., Varatkowpairote, N., Taokaew, S., & Phisalaphong, M. (2021). Alginate as dispersing agent for compounding natural rubber with high loading microfibrillated cellulose. Polymers, 13(3), 468. http://dx.doi.org/10.3390/polym13030468. PMid:33535720.

31 Almeida, G. F. B., Cardoso, M. R., Zancanela, D. C., Bernardes, L. L., Norberto, A. M. Q., Barros, N. R., Paulino, C. G., Chagas, A. L. D., Herculano, R. D., & Mendonça, C. R. (2020). Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Applied Surface Science, 506, 144762. http://dx.doi.org/10.1016/j.apsusc.2019.144762.

32 Bruschi, M. L. (2015). Modification of drug release. In M. L. Bruschi (Ed.), Strategies to modify the drug release from pharmaceutical systems (pp. 15-28). UK:Woodhead Publishing.

33 Robinson, D. H., & Mauger, J. W. (1991). Drug delivery systems. American Journal of Hospital Pharmacy, 48(10, Suppl. 1), S14-S23. PMid:1772110.

34 Floriano, J. F., Barros, N. R., Cinman, J. L. F., Silva, R. G., Loffredo, A. V., Borges, F. A., Norberto, A. M. Q., Chagas, A. L. D., Garms, B. C., Graeff, C. F. O., & Herculano, R. D. (2018). Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. Journal of Polymers and the Environment, 26(6), 2281-2289. http://dx.doi.org/10.1007/s10924-017-1127-x.

35 Zancanela, D. C., Funari, C. S., Herculano, R. D., Mello, V. M., Rodrigues, C. M., Borges, F. A., Barros, N. R., Marcos, C. M., Almeida, A. M. F., & Guastaldi, A. C. (2019). Natural rubber latex membranes incorporated with three different types of propolis: physical-chemistry and antimicrobial behaviours. Materials Science and Engineering C, 97, 576-582. http://dx.doi.org/10.1016/j.msec.2018.12.042. PMid:30678944.

36 Borges, F. A., Bolognesi, L. F. C., Trecco, A., Drago, B. C., Arruda, L. B., Lisboa, P. N. Fo., Pierri, E. G., Graeff, C. F. O., Santos, A. G., Miranda, M. C. R., & Herculano, R. D. (2014). Natural rubber latex: study of a novel carrier for Casearia Sylvestris swartz delivery. International Scholarly Research Notices, 2014, 241297.

37 Miranda, M. C. R., Borges, F. A., Barros, N. R., Santos, N. A. Fo., Mendonça, R. J., Herculano, R. D., & Cilli, E. M. (2018). Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids, 50(5), 503-511. http://dx.doi.org/10.1007/s00726-017-2534-y. PMid:29305745.

38 Aielo, P. B., Borges, F. A., Romeira, K. M., Miranda, M. C. R., Arruda, L. B., Lisboa, P. N. Fo., Drago, B. C., & Herculano, R. D. (2014). Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research, 17(Suppl. 1), 146-152. http://dx.doi.org/10.1590/S1516-14392014005000010.

39 Barros, N. R., Heredia-Vieira, S. C., Borges, F. A., Benites, N. M., Reis, C. E., Miranda, M. C. R., Cardoso, C. A. L., & Herculano, R. D. (2018). Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomedical Physics & Engineering Express, 4(3), 035026. http://dx.doi.org/10.1088/2057-1976/aab33a.

40 Bolognesi, L. F. C., Borges, F. A., Cinman, J. L. F., Silva, R. G., Santos, A. G., & Herculano, R. D. (2015). Natural latex films as carrier for Casearia Sylvestris swartz extract associated with ciprofloxacin. American Chemical Science Journal, 5(1), 17-25. http://dx.doi.org/10.9734/ACSJ/2015/12263.

41 Borges, F. A., Trecco, A., Barros, N. R., Miranda, M. C. R., Pierri, E. G., Santos, A. G., & Herculano, R. D. (2014). Casearia sylvestris swartz extract release using natural rubber latex biomembranes as carrier. European Journal of Medicinal Plants, 4(12), 1420-1430. http://dx.doi.org/10.9734/EJMP/2014/12039.

42 Trecco, A., Borges, F. A., Pierri, E. G., Santos, A. G., Chin, C. M., & Herculano, R. D. (2014). Liberação de componentes do extrato de Casearia Sylvestris Swartz empregando membranas de látex natural como suporte. Revista de Ciências Farmacêuticas Básica e Aplicada, 35(1), 89-95. Retrieved in 2022, January 13, from https://repositorio.unesp.br/bitstream/handle/11449/180910/ISSN1808-4532-2014-35-01-89-95.pdf?sequence=1&isAllowed=y

43 Wattanakaroon, W., Akanitkul, P., Kaowkanya, W., & Phoudee, W. (2017). Albumin-natural rubber latex composite as a dermal wound dressing. Materials Today: Proceedings, 4(5), 6633-6640.

44 Garms, B. C., Borges, F. A., Santos, R. E., Nigoghossian, K., Miranda, M. C. R., Miranda, I. U., Daltro, P., Scarpari, S. L., Giagio, R. J., Barros, N. R., Alarcon, K. M., Drago, B. C., Gemeinder, J. L. P., Oliveira, B. H., Nascimento, V. M. G., Loffredo, A. V., & Herculano, R. D. (2017). Characterization and microbiological application of ciprofloxacin loaded in natural rubber latex membranes. Journal of Pharmaceutical Research International, 15(1), 1-10.

45 Murbach, H. D., Ogawa, G. J., Borges, F. A., Miranda, M. C. R., Lopes, R., Barros, N. R., Mazalli, A. V. G., Silva, R. G., Cinman, J. L. F., Drago, B. C., & Herculano, R. D. (2014). Ciprofloxacin release using natural rubber latex membranes as carrier. International Journal of Biomaterials, 2014, 157952. http://dx.doi.org/10.1155/2014/157952. PMid:25587278.

46 Marcelino, M. Y., Borges, F. A., Costa, A. F. M., Singulani, J. L., Ribeiro, N. V., Costa-Orlandi, C. B., Garms, B. C., Mendes-Giannini, M. J. S., Herculano, R. D., & Fusco-Almeida, A. M. (2018). Antifungal Activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiology, 13(3), 359-367. http://dx.doi.org/10.2217/fmb-2017-0154. PMid:29464962.

47 Dick, T. A., & Santos, L. A. (2017). In situ synthesis and characterization of hydroxyapatite/natural rubber composites for biomedical applications. Materials Science and Engineering C, 77, 874-882. http://dx.doi.org/10.1016/j.msec.2017.03.301. PMid:28532104.

48 Herculano, R. D., Queiroz, A. A. A., Kinoshita, A., Oliveira, O. N. Jr., & Graeff, C. F. O. (2011). On the release of metronidazole from natural rubber latex membranes. Materials Science and Engineering C, 31(2), 272-275. http://dx.doi.org/10.1016/j.msec.2010.09.007.

49 Herculano, R. D., Guimarães, S. A. C., Belmonte, G. C., Duarte, M. A. H., Oliveira, O. N. Jr., Kinoshita, A., & Graeff, C. F. O. (2010). Metronidazole release using natural rubber latex as matrix. Materials Research, 13(1), 57-61. http://dx.doi.org/10.1590/S1516-14392010000100013.

50 Krupp, T., Santos, B. D., Gama, L. A., Silva, J. R., Arrais-Silva, W. W., Souza, N. C., Américo, M. F., & Souto, P. C. S. (2019). Natural rubber - propolis membrane improves wound healing in second-degree burning model. International Journal of Biological Macromolecules, 131, 980-988. http://dx.doi.org/10.1016/j.ijbiomac.2019.03.147. PMid:30910673.

51 Zancanela, D. C., Herculano, R. D., Funari, C. S., Marcos, C. M., Almeida, A. M. F., & Guastaldi, A. C. (2017). Physical, chemical and antimicrobial implications of the association of propolis with a natural rubber latex membrane. Materials Letters, 209, 39-42. http://dx.doi.org/10.1016/j.matlet.2017.07.093.

52 Silva, A. J., Silva, J. R., Souza, N. C., & Souto, P. C. S. (2014). Membranes from latex with propolis for biomedical applications. Materials Letters, 116, 235-238. http://dx.doi.org/10.1016/j.matlet.2013.11.045.

53 Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., & Baffa, O. (2011). Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 82(1), 140-145. http://dx.doi.org/10.1016/j.saa.2011.07.024. PMid:21803643.

54 Guidelli, É. J., Kinoshita, A., Ramos, A. P., & Baffa, O. (2013). Silver nanoparticles delivery system based on natural rubber latex membranes. Journal of Nanoparticle Research, 15(4), 1536. http://dx.doi.org/10.1007/s11051-013-1536-2.

55 Suteewong, T., Wongpreecha, J., Polpanich, D., Jangpatarapongsa, K., Kaewsaneha, C., & Tangboriboonrat, P. (2019). PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Colloids and Surfaces. B, Biointerfaces, 174, 544-552. http://dx.doi.org/10.1016/j.colsurfb.2018.11.037. PMid:30500743.

56 Borges, F. A., Siguematsu, P. R., Herculano, R. D., & Santos, C. (2015). Novel sustained-release of Stryphnodendron obovatum leaves extract using natural rubber latex as carrier. Revista de Ciências Farmacêuticas Básica e Aplicada, 36(3), 379-384. Retrieved in 2022, January 13, from https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/25

57 Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R., & Russell, A. D. (1997). Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Letters in Applied Microbiology, 25(4), 279-283. http://dx.doi.org/10.1046/j.1472-765X.1997.00219.x. PMid:9351278.

58 Roy, N., Mondal, S., Laskar, R. A., Basu, S., Mandal, D., & Begum, N. A. (2010). Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids and Surfaces. B, Biointerfaces, 76(1), 317-325. http://dx.doi.org/10.1016/j.colsurfb.2009.11.011. PMid:20015622.

59 Martinotti, S., & Ranzato, E. (2015). Propolis: a new frontier for wound healing? Burns and Trauma, 3, 9. http://dx.doi.org/10.1186/s41038-015-0010-z. PMid:27574655.

60 Torlak, E., & Sert, D. (2013). Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. International Journal of Biological Macromolecules, 60, 52-55. http://dx.doi.org/10.1016/j.ijbiomac.2013.05.013. PMid:23707735.

61 Ferreira, P. M. P., Costa-Lotufo, L. V., Moraes, M. O., Barros, F. W. A., Martins, A. M. A., Cavalheiro, A. J., Bolzani, V. S., Santos, A. G., & Pessoa, C. (2011). Folk uses and pharmacological properties of Casearia Sylvestris: a medicinal review. Anais da Academia Brasileira de Ciências, 83(4), 1373-1384. http://dx.doi.org/10.1590/S0001-37652011005000040. PMid:22159347.

62 Akhtar, N., Singh, V., Yusuf, M., & Khan, R. A. (2020). Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedical Engineering, 65(3), 243-272. PMid:31926064.

63 Suksaeree, J., Pichayakorn, W., Monton, C., Sakunpak, A., Chusut, T., & Saingam, W. (2014). Rubber polymers for transdermal drug delivery systems. Industrial & Engineering Chemistry Research, 53(2), 507-513. http://dx.doi.org/10.1021/ie403619b.

64 Suksaeree, J., Boonme, P., Taweepreda, W., Ritthidej, G. C., & Pichayakorn, W. (2012). Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chemical Engineering Research & Design, 90(7), 906-914. http://dx.doi.org/10.1016/j.cherd.2011.11.002.

65 Guerra, N. B., Cassel, J. B., Henckes, N. A. C., Oliveira, F. S., Cirne-Lima, E. O., & Santos, L. A. L. (2018). Chemical and in vitro characterization of epoxidized natural rubber blends for biomedical applications. Journal of Polymer Research, 25(8), 172. http://dx.doi.org/10.1007/s10965-018-1542-2.

66 Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering : general approaches and tissue-specific considerations. European Spine Journal, 17(Suppl. 4), 467-479. http://dx.doi.org/10.1007/s00586-008-0745-3. PMid:19005702.

67 Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., & Turng, L. (2018). Fabrication of scaffolds in tissue engineering: a review. Frontiers of Mechanical Engineering, 13(1), 107-119. http://dx.doi.org/10.1007/s11465-018-0496-8.

68 Machado, E. G., Issa, J. P. M., Figueiredo, F. A. T., Santos, G. R., Galdeano, E. A., Alves, M. C., Chacon, E. L., Ferreira, R. S., Jr., Barraviera, B., & Cunha, M. R. (2015). A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects. Acta Histochemica, 117(3), 288-296. http://dx.doi.org/10.1016/j.acthis.2015.03.006. PMid:25825118.

69 Araujo, M. M., Massuda, E. T., & Hyppolito, M. A. (2012). Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cirurgica Brasileira, 27(8), 566-571. http://dx.doi.org/10.1590/S0102-86502012000800009. PMid:22850709.

70 Carlos, B. L., Yamanaka, J. S., Yanagihara, G. R., Macedo, A. P., Watanabe, P. C. A., Issa, J. P. M., Herculano, R. D., & Shimano, A. C. (2019). Effects of latex membrane on guided regeneration of long bones. Journal of Biomaterials Science. Polymer Edition, 30(14), 1291-1307. http://dx.doi.org/10.1080/09205063.2019.1627653. PMid:31177925.

71 Nascimento, R. M., Faita, F. L., Agostini, D. L. S., Job, A. E., Guimarães, F. E. G., & Bechtold, I. H. (2014). Production and characterization of natural rubber-Ca/P blends for biomedical purposes. Materials Science and Engineering C, 39, 29-34. http://dx.doi.org/10.1016/j.msec.2014.02.019. PMid:24863193.

72 Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C., & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. Journal of Pharmaceutical Sciences, 103(8), 2211-2230. http://dx.doi.org/10.1002/jps.24068. PMid:24985412.

73 Frade, M. A. C., Assis, R. V. C., Coutinho-Netto, J., Andrade, T. A. M., & Foss, N. T. (2012). The vegetal biomembrane in the healing of chronic venous ulcers. Anais Brasileiros de Dermatologia, 87(1), 45-51. http://dx.doi.org/10.1590/S0365-05962012000100005. PMid:22481650.

74 Garms, B. C., Borges, F. A., Barros, N. R., Marcelino, M. Y., Leite, M. N., Del Arco, M. C., Salvador, S. L. S., Pegorin, G. S., Oliveira, K. S. M., Frade, M. A. C., & Herculano, R. D. (2019). Novel polymeric dressing to the treatment of infected chronic wound. Applied Microbiology and Biotechnology, 103(12), 4767-4778. http://dx.doi.org/10.1007/s00253-019-09699-x. PMid:31065753.

75 International Standard Organization – ISO. (2007). ISO 10993-6: biological evaluation of medical devices. Part 6: test for local effects after implantation. Silver Spring: ISO.

76 Sousa, L. H., Ceneviva, R., Coutinho-Netto, J., Mrué, F., Sousa, L. H. Fo., & Silva, O. C. (2011). Morphologic evaluation of the use of a latex prosthesis in videolaparoscopic inguinoplasty: an experimental study in dogs. Acta Cirurgica Brasileira, 26(Suppl. 2), 84-91. http://dx.doi.org/10.1590/S0102-86502011000800016. PMid:22030821.

77 Mendonça, R. J., Maurício, V. B., Teixeira, L. B., Lachat, J. J., & Coutinho-Netto, J. (2010). Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytotherapy Research, 24(5), 764-768. http://dx.doi.org/10.1002/ptr.3043. PMid:19943314.

78 Moura, J. M. L., Ferreira, J. F., Marques, L., Holgado, L., Graeff, C. F. O., & Kinoshita, A. (2014). Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits. Journal of Materials Science. Materials in Medicine, 25(9), 2111-2120. http://dx.doi.org/10.1007/s10856-014-5241-1. PMid:24849612.

79 Cury, D. P., Schäfer, B. T., Almeida, S. R. Y., Righetti, M. M. S., & Watanabe, I.-S. (2019). Application of a purified protein from natural latex and the influence of suture type on achilles tendon repair in rats. The American Journal of Sports Medicine, 47(4), 901-914. http://dx.doi.org/10.1177/0363546518822836. PMid:30759353.

80 Brandão, M. L., Reis, P. R. M., Araújo, L. A., Araújo, A. C. V., Santos, M. H. A. S., & Miguel, M. P. (2016). Evaluation of wound healing treated with latex derived from rubber trees and Aloe Vera extract in rats. Acta Cirurgica Brasileira, 31(9), 570-577. http://dx.doi.org/10.1590/S0102-865020160090000001. PMid:27737341.

81 Dias, F. J., Fazan, V. P. S., Cury, D. P., Almeida, S. R. Y., Borie, E., Fuentes, R., Coutinho-Netto, J., & Watanabe, I. (2019). Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. PLoS One, 14(1), e0210211. http://dx.doi.org/10.1371/journal.pone.0210211. PMid:30625210.

82 Dias, F. J., Issa, J. P. M., Coutinho-Netto, J., Fazan, V. P. S., Sousa, L. G., Iyomasa, M. M., Papa, P. C., & Watanabe, I. (2015). Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats. Journal of the Neurological Sciences, 349(1-2), 129-137. http://dx.doi.org/10.1016/j.jns.2014.12.043. PMid:25619570.

83 Leite, M. N., Leite, S. N., Caetano, G. F., Andrade, T. A. M., Fronza, M., & Frade, M. A. C. (2020). Healing effects of natural latex serum 1% from Hevea brasiliensis in an experimental skin abrasion wound model. Anais Brasileiros de Dermatologia, 95(4), 418-427. http://dx.doi.org/10.1016/j.abd.2019.12.003. PMid:32473773.

84 Nunes, G. A. M. A., Rosa, S. S. R. F., Rocha, A. F., Cólon, D., & Balthazar, J. M. (2015). Comparative analysis of the use of natural latex custom insole in diabetic foot treatment through biomechanical evaluation in static examination. In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro: Associação Brasileira de Engenheria e Ciências Mecânicas.

85 Nunes, G. A. M. A., Reis, M. C., Rosa, M. F. F., Peixoto, L. R. T., Rocha, A. F., & Rosa, S. S. R. F. (2016). A system for treatment of diabetic foot ulcers using led irradiation and natural latex. Research on Biomedical Engineering, 32(1), 3-13. http://dx.doi.org/10.1590/2446-4740.0744. PMid:25992510.

86 Frade, M. A. C., Valverde, R. V., Assis, R. V. C., Coutinho-Netto, J., & Foss, N. T. (2001). Chronic phlebopathic cutaneous ulcer: a therapeutic proposal. International Journal of Dermatology, 40(3), 238-240. http://dx.doi.org/10.1046/j.1365-4362.2001.00977-2.x. PMid:11422535.

87 Dias, F. J., Issa, J. P. M., Iyomasa, M. M., Coutinho-Netto, J., Calzzani, R. A. J., Iyomasa, D. M., Sousa, L. G., Almeida, S. R. Y., Cury, D. P., & Watanabe, I.-S. (2013). Application of a low-level laser therapy and the purified protein from natural latex (Hevea Brasiliensis) in the controlled crush injury of the sciatic nerve of rats : a morphological, quantitative, and ultrastructural study. BioMed Research International, 2013, 597863. http://dx.doi.org/10.1155/2013/597863. PMid:23936823.

88 Rosa, J. P. P. (2016). Effects of rubber latex membrane in wound healing in rabbits experimental. Revista da Universidade Vale do Rio Verde, 14(2), 821-840. http://dx.doi.org/10.5892/ruvrd.v14i2.3344.

89 Biocure Pharma Biotechnology. (2021, April 12). Retrieved in 2022, January 13, from https://biocure.com.br/pelenova/

90 Santos, L. A., Marques, D. R., Fraga, J. C. S., Schopf, L. F., & Sousa, V. C. (2011). Br PI1100522-0 A2. Rio Grande do Sul: UFRGS. Retrieved in 2022, January 13, from https://lume.ufrgs.br/handle/10183/85546

91 Henckes, N. A. C., Festa, J. C. D., Faleiro, D., Medeiros, H. R., Guerra, N. B., Santos, L. A. L., Terraciano, P. B., Passos, E. P., Oliveira, F. S., & Cirne-Lima, E. O. (2019). Tissue-engineered solution containing cells and biomaterials—an in vitro study: A perspective as a novel therapeutic application. The International Journal of Artificial Organs, 42(6), 307-314. http://dx.doi.org/10.1177/0391398819833383. PMid:30838938.

92 Santos, I. F., Santos, L. A. L., Scardueli, C. R., Spolidorio, L. C., Marcantonio-Junior, E., Marcantonio, C. C., & Marcantonio, R. A. C. (2019). Evaluation of the combination of poly (Lactic-Co-Glycolic Acid) and polyisoprene (Cellprene®) materials: histological study in rats. Revista de Odontologia da UNESP, 48, e20190108. http://dx.doi.org/10.1590/1807-2577.10819.

93 Soliman, S., Sant, S., Nichol, J. W., Khabiry, M., Traversa, E., & Khademhosseini, A. (2011). Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Journal of Biomedical Materials Research. Part A, 96(3), 566-574. http://dx.doi.org/10.1002/jbm.a.33010. PMid:21254388.

94 Murugan, R., & Ramakrishna, S. (2006). Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Engineering, 12(3), 435-447. http://dx.doi.org/10.1089/ten.2006.12.435. PMid:16579677.

95 Dwivedi, C., Pandey, I., Pandey, H., Ramteke, P. W., Pandey, A. C., Mishra, S. B., & Patil, S. (2017). Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In A. M. Grumezescu (Ed.), Nano- and microscale drug delivery systems, design and fabrication (pp. 147-164). UK: Elsevier. http://dx.doi.org/10.1016/B978-0-323-52727-9.00009-1.

96 Nelson, M. T., Keith, J. P., Li, B., Stocum, D. L., & Li, J. (2012). Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proceedings of the Institution of Mechanical Engineers. Part N, Journal of Nanoengineering and Nanosystems, 226(3), 111-121. http://dx.doi.org/10.1177/1740349912450828.

97 Li, Y., Wang, X., Peng, Z., Li, P., Li, C., & Kong, L. (2019). Fabrication and properties of elastic fibers from electrospinning natural rubber. Journal of Applied Polymer Science, 136(43), 48153. http://dx.doi.org/10.1002/app.48153.

98 Panichpakdee, J., Larpkiattaworn, S., Nuchchapong, S., Naruepai, B., Leekrajang, M., & Somwongsa, P. (2019). Electrospinning of natural rubber latex-blended polyvinyl alcohol. Materials Today: Proceedings, 17(4), 2020-2027.

99 Costa, L. M. M., Mattoso, L. H. C., & Ferreira, M. (2013). Electrospinning of PCL/natural rubber blends. Journal of Materials Science, 48(24), 8501-8508. http://dx.doi.org/10.1007/s10853-013-7667-0.

100 Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2006). Preparation & characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromolecular Bioscience, 6(1), 70-77. http://dx.doi.org/10.1002/mabi.200500150. PMid:16374772.

101 Ambegoda, V. T., Egodage, S. M., Blum, F. D., & Maddumaarachchi, M. (2021). Enhancement of hydrophobicity of natural rubber latex films using diatomaceous earth. Journal of Applied Polymer Science, 138(12), 50047. http://dx.doi.org/10.1002/app.50047.

102 Liu, Y., Zhou, S., Gao, Y., & Zhai, Y. (2019). Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian Journal of Pharmaceutical Sciences, 14(2), 130-143. http://dx.doi.org/10.1016/j.ajps.2018.04.004. PMid:32104445.

6356f735a9539535fd0c0f63 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections