A review on research, application, processing, and recycling of PPS based materials
Larissa Stieven Montagna; Marcel Yuzo Kondo; Emanuele Schneider Callisaya; Celson Mello; Bárbara Righetti de Souza; Ana Paula Lemes; Edson Cocchieri Botelho; Michelle Leali Costa; Manoel Cléber de Sampaio Alves; Marcos Valério Ribeiro; Mirabel Cerqueira Rezende
Abstract
Keywords
References
1 Bonten, C. (2019). Plastics Materials Engineering. In Smith, M. (Ed.),
2 Zuo, P., Tcharkhtchi, A., Shirinbayan, M., Fitoussi, J., & Bakir, F. (2019). Overall Investigation of poly(phenylene Sulfide) from synthesis and process to applications: a review.
3 Wypych, G. (2012). PPS poly(p-phenylene sulfide). In G. Wypych.
4 Fink, J. K. (2014). Poly(phenylene sulfide). In J. K. Fink.
5 Macallum, A. D. (1948). A dry synthesis of aromatic sulfides: phenylene sulfide resins.
6 Devaraju, S., & Alagar, M. (2021). Polymer matrix composite materials for aerospace applications. In Brabazon, D. (Ed.),
7 Girijappa, G. T. Y., Ayyappan, V., Puttegowda, M., Rangappa, S. M., Parameswaranpillai, J., & Siengchin, S. (2020). Plastics in automotive applications. In S. Hashmi.
8 Finnegan, W., Flanagan, T., & Goggins, J. (2020). Development of a novel solution for leading edge erosion on offshore wind turbine blades. In
9 Muthukumar, C., Krishnasamy, S., Thiagamani, S. M. K., Jeyaguru, S., Siengchin, S., & Nagarajan, R. (2021). Polymers in aerospace applications. In S. Hashmi.
10 Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade - a review.
11 Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: a review.
12 Ali, H. T., Akrami, R., Fotouhi, S., Bodaghi, M., Saeedifar, M., Yusuf, M., & Fotouhi, M. (2021). Fiber reinforced polymer composites in bridge industry.
13 Chen, G., Mohanty, A. K., & Misra, M. (2021). Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons.
14 Vinayagamoorthy, R. (2018). A review on the machining of fiber-reinforced polymeric laminates.
15 Geier, N., Davim, J. P., & Szalay, T. (2019). Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review.
16 Zadafiya, K., Bandhu, D., Kumari, S., Chatterjee, S., & Abhishek, K. (2021). Recent trends in drilling of carbon fiber reinforced polymers (CFRPs): A state-of-the-art review.
17 Vo Dong, P. A., Azzaro-Pantel, C., & Cadene, A.-L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management.
18 Vincent, G. A. (2019).
19 Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., & Chen, C. (2021). Current technologies for plastic waste treatment: a review.
20 Rahate, A. S., Nemade, K. R., & Waghuley, S. A. (2013). Polyphenylene sulfide (PPS): state of the art and applications.
21 Biron, M. (2018). Plastics solutions for practical problems. In M. Biron.
22 Elsevier. (2013). Boeing 787 in safety review.
23 Schmuck, R. (2020). Global supply chain quality integration strategies and the case of the Boeing 787 Dreamliner development.
24 Elsevier. (2014). Airbus readies first A350.
25 Marsh, G. (2007). Airbus takes on Boeing with reinforced plastic A350 XWB.
26 Van Ingen, J. W., Buitenhuis, A., Van Wijngaarden, M., & Simmons, F. (2010). Development of the Gulfstream G650 Induction Welded Thermoplastic Elevators and Rudder. In
27 Palanikumar, K., Ashok Gandhi, R., Raghunath, B. K., & Jayaseelan, V. (2019). Role of calcium carbonate(CaCO3) in improving wear resistance of polypropylene(PP) components used in automobiles.
28 Romero, P. E., Arribas-Barrios, J., Rodriguez-Alabanda, O., González-Merino, R., & Guerrero-Vaca, G. (2021). Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds.
29 Panaitescu, I., Koch, T., & Archodoulaki, V.-M. (2019). Accelerated aging of a glass fi ber polyurethane composite for automotive applications.
30 Sajan, S., & Selvaraj, D. P. (2021). A review on polymer matrix composite materials and their applications.
31 Bernardi, C., Toury, B., Salvia, M., Contraires, E., Dubreuil, F., Virelizier, F., Ourahmoune, R., Surowiec, B., & Benayoun, S. (2022). Effects of flaming on polypropylene long glass fiber composites for automotive bonding applications with polyurethane.
32 Kroll, L., Meyer, M., Nendel, W., & Schormair, M. (2019). Highly rigid assembled composite structures with continuous fiber-reinforced thermoplastics for automotive applications.
33 Mallick, P. K., editor (2010).
34 Moran, K., Lake, P., & Dole, J. (2002). Using polyphenylene sulphide in high-performance pumps.
35 Pradeep, S. A., Iyer, R. K., Kazan, H., & Pilla, S. (2017). Automotive applications of plastics: past, present, and future. In Kutz, M. (Ed.),
36 Begum, S. A., Rane, A. V., & Kanny, K. (2020). Applications of compatibilized polymer blends in automobile industry. In Ajitha, A.R. & Sabu Thomas, S. (Eds.),
37 Reddy, S. S. P., Suresh, R., Hanamantraygouda, M. B., & Shivakumar, B. P. (2021). Use of composite materials and hybrid composites in wind turbine blades.
38 Chen, X. (2019). Experimental observation of fatigue degradation in a composite wind turbine blade.
39 Keegan, M. H., Nash, D. H., & Stack, M. M. (2013). On erosion issues associated with the leading edge of wind turbine blades.
40 Elhadi Ibrahim, M., & Medraj, M. (2020). Water droplet erosion ofwind turbine blades: mechanics, testing, modeling and future perspectives.
41 Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades.
42 Marsh, G. (2010). Could thermoplastics be the answer for utility-scale wind turbine blades?
43 Murray, R. E., Jenne, S., Snowberg, D., Berry, D., & Cousins, D. (2019). Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade.
44 Joustra, J., Flipsen, B., & Balkenende, R. (2021). Structural reuse of high end composite products: A design case study on wind turbine blades.
45 Mathijsen, D. (2013). Trailblazing thermoplastics for wind turbine blades.
46 European Communities. (1999).
47 Murray, R. E., Beach, R., Barnes, D., Snowberg, D., Berry, D., Rooney, S., Jenks, M., Gage, B., Boro, T., Wallen, S., & Hughes, S. (2021). Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade.
48 Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). The roles and applications of additive manufacturing in the aerospace and automobile sector.
49 Rojas, J. A., Santos, L. F. P., Costa, M. L., Ribeiro, B., & Botelho, E. C. (2017). Moisture and temperature influence on mechanical behavior of PPS/buckypapers carbon fiber laminates.
50 Lohr, C., Beck, B., Henning, F., Weidenmann, K. A., & Elsner, P. (2019). Mechanical properties of foamed long glass fiber reinforced polyphenylene sulfide integral sandwich structures manufactured by direct thermoplastic foam injection molding.
51 Bruijn, T., & van Hattum, F. (2021). Rotorcraft access panel from recycled carbon PPS – The world’s first flying fully recycled thermoplastic composite application in aerospace.
52 Zhao, L., Yu, Y., Huang, H., Yin, X., Peng, J., Sun, J., Huang, L., Tang, Y., & Wang, L. (2019). High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics.
53 Araújo, I. G., P Santos, L. F., Marques, L. F. B., Reis, J. F., B de Souza, S. D., & Botelho, E. C. (2019). Influence of environmental effect on thermal and mechanical properties of welded PPS/carbon fiber laminates.
54 Ma, Z., Zhang, G., Yang, Q., Shi, X., Li, J., Zhang, H., & Qin, J. (2018). Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends.
55 Lin, Y., Lang, F., Zeng, D., Yi-Lan, Y., Li, D., & Xiao, C. (2020). Effects of modified graphene on property optimization in thermal conductive composites based on PPS/PA6 blend.
56 Geng, P., Zhao, J., Wu, W., Wang, Y., Wang, B., Wang, S., & Li, G. (2018). Effect of thermal processing and heat treatment condition on 3D printing PPS properties.
57 El Magri, A., El Mabrouk, K., Vaudreuil, S., & Ebn Touhami, M. (2020). Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology.
58 Yeole, P., Hassen, A. A., Kim, S., Lindahl, J., Kunc, V., Franc, A., & Vaidya, U. (2020). Mechanical characterization of high-temperature carbon fiber-polyphenylene sulfide composites for large area extrusion deposition additive manufacturing.
59 Barbosa, L. C. M., de Souza, S. D. B., Botelho, E. C., Cândido, G. M., & Rezende, M. C. (2019). Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites.
60 Gaugel, S., Sripathy, P., Haeger, A., Meinhard, D., Bernthaler, T., Lissek, F., Kaufeld, M., Knoblauch, V., & Schneider, G. (2016). A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP).
61 Zhang, C., & Lu, M. (2018). A novel variable-dimensional vibration-assisted actuator for drilling CFRP.
62 Geng, D., Liu, Y., Shao, Z., Lu, Z., Cai, J., Li, X., Jiang, X., & Zhang, D. (2019). Delamination formation, evaluation and suppression during drilling of composite laminates: A review.
63 Wan, M., Li, S.-E., Yuan, H., & Zhang, W.-H. (2019). Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): A review.
64 Batista, M. F., Basso, I., Toti, F. A., Rodrigues, A. R., & Tarpani, J. R. (2020). Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers.
65 Korugic-Karasz, L., & Farugia, J. (2002). Polyphenylene sulphide manufacturing in electronic industry and thermal relaxation of stresses.
66 Lee, E.-S. (2001). Precision machining of glass fibre reinforced plastics with respect to tool characteristics.
67 Amin, M., Yuan, S., Israr, A., Zhen, L., & Qi, W. (2018). Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers.
68 Kubher, S., Gururaja, S., & Zitoune, R. (2021).
69 Wang, Q., & Jia, X. (2021). Analytical study and experimental investigation on delamination in drilling of CFRP laminates using twist drills.
70 Panchagnula, K. K., & Palaniyandi, K. (2018). Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review.
71 Cepero-Mejías, F., Curiel-Sosa, J. L., Blázquez, A., Yu, T. T., Kerrigan, K. & Phadnis, V. A. (2020). Review of recent developments and induced damage assessment in the modelling of the machining of long fibre reinforced polymer composites.
72 Iliescu, D., Gehin, D., Gutierrez, M. E., & Girot, F. (2010). Modeling and tool wear in drilling of CFRP.
73 Sorrentino, L., Turchetta, S., & Bellini, C. (2017). In process monitoring of cutting temperature during the drilling of FRP laminate.
74 Nomura, M., Suzuki, K., Wu, Y. B. & Fujimoto, M. (2014). Small hole drilling for polyphenylene sulfide(PPS) – Influence of depth-of-cut on burr formation.
75 Basso, I., Batista, M. F., Jasinevicius, R. G., Rubio, J. C. C. & Rodrigues, A. R. (2019). Micro drilling of carbon fiber reinforced polymer.
76 Biermann, D., & Feldhoff, M. (2012). Abrasive points for drill grinding of carbon fibre reinforced thermoset.
77 Khashaba, U. A. (2013). Drilling of polymer matrix composites: A review.
78 Iskandar, Y., Tendolkar, A., Attia, M. H., Hendrick, P., Damir, A., & Diakodimitris, C. (2014). Flow visualization and characterization for optimized MQL machining of composites.
79 Batista, N. L., Olivier, P., Bernhart, G., Rezende, M. C., & Botelho, E. C. (2016). Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates.
80 Costa, G. G., Botelho, E. C., Rezende, M. C., & Costa, M. L. (2008). Thermal cycles evaluation during the compression forming of parts made of polyphenylsulphide reinforced with continuous carbon fiber.
81 Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., & Verpoest, I. (2020). Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices.
82 Furushima, Y., Nakada, M., Yoshida, Y., & Okada, K. (2018). Crystallization/melting kinetics and morphological analysis of polyphenylene sulfide.
83 Batista, N. L., Anagnostopoulos, K., Botelho, E. C., & Kim, H. (2021). Influence of crystallinity on interlaminar fracture toughness and impact properties of polyphenylene sulfide/carbon fiber laminates.
84 Chukov, D., Nematulloev, S., Zadorozhnyy, M., Tcherdyntsev, V., Stepashkin, A., & Zherebtsov, D. (2019). Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites.
85 Wang, W., Wu, X., Ding, C., Huang, X., Ye, N., Yu, Q., & Mai, K. (2021). Thermal aging performance of glass fiber/polyphenylene sulfide composites in high temperature.
86 Zuo, P., Tcharkhtchi, A., Shirinbayan, M., Fitoussi, J., & Bakir, F. (2020). Effect of thermal aging on crystallization behaviors and dynamic mechanical properties of glass fiber reinforced polyphenylene sulfide (PPS/GF) composites.
87 Batista, N. L., Rezende, M. C., & Botelho, E. C. (2018). Effect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiation.
88 American Society for Testing and Materials – ASTM. (2016).
89 Batista, N. L., Faria, M. C. M., Iha, K., Oliveira, P. C., & Botelho, E. C. (2015). Influence of water immersion and ultraviolet weathering on mechanical and viscoelastic properties of polyphenylene sulfide-carbon fiber composites.
90 Faria, M. C. M., Oliveira, P. C., Ribeiro, B., Martet, J. M. F., & Botelho, E. C. (2017). Study of the influence on higrothermal conditioning on viscoelastic properties of thermoplastic composites.
91 European Communities. (2000).
92 European Communities. (2008).
93 Bernatas, R., Dagreou, S., Despax-Ferreres, A., & Barasinski, A. (2021). Recycling of fiber reinforced composites with a focus on thermoplastic composites.
94 Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers.
95 Holmes, M. (2018). Recycled carbon fiber composites become a reality.
96 Pakdel, E., Kashi, S., Varley, R., & Wang, X. (2022). Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes.
97 Meng, F., McKechnie, J., & Pickering, S. J. (2018). An assessment of financial viability of recycled carbon fibre in automotive applications.
98 Perng, L. H. (2000). Thermal decomposition characteristics of poly(phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques.
99 Vincent, G. A., Bruijn, T. A., Wijskamp, S., van Drongelen, M. & Akkerman, R. (2020). Process- and material-induced heterogeneities in recycled thermoplastic composites.
100 Wang, H., Zhu, Z., Yuan, J., Wang, H., Wang, Z., Yang, F., Zhan, J., & Wang, L. (2021). A new recycling strategy for preparing flame retardants from polyphenylene sulfide waste textiles.
101 Li, J., Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., & Kim, D. H. (2020). Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp.