Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210108
Polímeros: Ciência e Tecnologia
Review Article

A review on research, application, processing, and recycling of PPS based materials

Larissa Stieven Montagna; Marcel Yuzo Kondo; Emanuele Schneider Callisaya; Celson Mello; Bárbara Righetti de Souza; Ana Paula Lemes; Edson Cocchieri Botelho; Michelle Leali Costa; Manoel Cléber de Sampaio Alves; Marcos Valério Ribeiro; Mirabel Cerqueira Rezende

Downloads: 2
Views: 991

Abstract

Among the engineering thermoplastics, poly(phenylene sulfide) (PPS) stands out for its excellent properties and mainly for processing at lower temperatures. The requirements requested by industries can be made by improving mechanical strength, weight reduction, and durable components by reinforcing the PPS matrix with fiberglass (FG) and carbon fiber (CF). This review intends to present the most current research related to the physical, mechanical, and thermal properties of PPS and the PPS/FG and PPS/CF composites most currently used by the aerospace, automotive, and energy industries. In addition to presenting the feasibility of mechanical and thermal recycling processes for PPS-based waste to reinsert a high market value thermoplastic into the industrial production cycle, thus contributing to the minimization of waste destined for landfills and incinerated or even improperly disposed of in the environment.

 

 

Keywords

applications, carbon fiber, composites, fiberglass, poly(phenylene sulfide)

References

1 Bonten, C. (2019). Plastics Materials Engineering. In Smith, M. (Ed.), Plastics technology (pp. 65-246). Munich: Carl Hanser Verlag. http://dx.doi.org/10.3139/9781569907689.003

2 Zuo, P., Tcharkhtchi, A., Shirinbayan, M., Fitoussi, J., & Bakir, F. (2019). Overall Investigation of poly(phenylene Sulfide) from synthesis and process to applications: a review. Macromolecular Materials and Engineering, 304(5), 1800686. http://dx.doi.org/10.1002/mame.201800686.

3 Wypych, G. (2012). PPS poly(p-phenylene sulfide). In G. Wypych. Handbook of polymers (pp. 511-515), Toronto: ChemTec Publishing. http://dx.doi.org/10.1016/B978-1-895198-47-8.50152-1

4 Fink, J. K. (2014). Poly(phenylene sulfide). In J. K. Fink. High performance polymers (pp. 129-151), USA: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-323-31222-6.00005-4

5 Macallum, A. D. (1948). A dry synthesis of aromatic sulfides: phenylene sulfide resins. The Journal of Organic Chemistry, 13(1), 154-159. http://dx.doi.org/10.1021/jo01159a020. PMid:18917721.

6 Devaraju, S., & Alagar, M. (2021). Polymer matrix composite materials for aerospace applications. In Brabazon, D. (Ed.), Encyclopedia of materials: composites (pp. 947-969). UK: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-819724-0.00052-5.

7 Girijappa, G. T. Y., Ayyappan, V., Puttegowda, M., Rangappa, S. M., Parameswaranpillai, J., & Siengchin, S. (2020). Plastics in automotive applications. In S. Hashmi. Reference module in materials science and materials engineering. UK: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-820352-1.00052-3.

8 Finnegan, W., Flanagan, T., & Goggins, J. (2020). Development of a novel solution for leading edge erosion on offshore wind turbine blades. In Proceedings of the 13th International Conference on Damage Assessment of Structures. Lecture Notes in Mechanical Engineering (pp. 517-528). Singapore: Springer. http://dx.doi.org/10.1007/978-981-13-8331-1_38.

9 Muthukumar, C., Krishnasamy, S., Thiagamani, S. M. K., Jeyaguru, S., Siengchin, S., & Nagarajan, R. (2021). Polymers in aerospace applications. In S. Hashmi. Reference module in materials science and materials engineering. UK: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-820352-1.00077-8.

10 Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade - a review. Materials Today: Proccedings, 5(1), 2635-2640. http://dx.doi.org/10.1016/j.matpr.2018.01.043.

11 Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: a review. Polymers, 13(21), 3721. http://dx.doi.org/10.3390/polym13213721. PMid:34771276.

12 Ali, H. T., Akrami, R., Fotouhi, S., Bodaghi, M., Saeedifar, M., Yusuf, M., & Fotouhi, M. (2021). Fiber reinforced polymer composites in bridge industry. Structures, 30, 774-785. http://dx.doi.org/10.1016/j.istruc.2020.12.092.

13 Chen, G., Mohanty, A. K., & Misra, M. (2021). Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons. Composites. Part B, Engineering, 209, 108553. http://dx.doi.org/10.1016/j.compositesb.2020.108553.

14 Vinayagamoorthy, R. (2018). A review on the machining of fiber-reinforced polymeric laminates. Journal of Reinforced Plastics and Composites, 37(1), 49-59. http://dx.doi.org/10.1177/0731684417731530.

15 Geier, N., Davim, J. P., & Szalay, T. (2019). Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites. Part A, Applied Science and Manufacturing, 125, 105552. http://dx.doi.org/10.1016/j.compositesa.2019.105552.

16 Zadafiya, K., Bandhu, D., Kumari, S., Chatterjee, S., & Abhishek, K. (2021). Recent trends in drilling of carbon fiber reinforced polymers (CFRPs): A state-of-the-art review. Journal of Manufacturing Processes, 69, 47-68. http://dx.doi.org/10.1016/j.jmapro.2021.07.029.

17 Vo Dong, P. A., Azzaro-Pantel, C., & Cadene, A.-L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling, 133, 63-75. http://dx.doi.org/10.1016/j.resconrec.2018.01.024.

18 Vincent, G. A. (2019). Recycling of thermoplastic composites laminates: the role of processing (PhD thesis). University of Twente, Netherlands. http://dx.doi.org/10.3990/1.9789036548526.

19 Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., & Chen, C. (2021). Current technologies for plastic waste treatment: a review. Journal of Cleaner Production, 282, 124523. http://dx.doi.org/10.1016/j.jclepro.2020.124523.

20 Rahate, A. S., Nemade, K. R., & Waghuley, S. A. (2013). Polyphenylene sulfide (PPS): state of the art and applications. Reviews in Chemical Engineering, 29(6), 471-489. http://dx.doi.org/10.1515/revce-2012-0021.

21 Biron, M. (2018). Plastics solutions for practical problems. In M. Biron. Thermoplastics and thermoplastic composites (pp. 883-1038). USA: William Andrew. http://dx.doi.org/10.1016/B978-0-08-102501-7.00007-2.

22 Elsevier. (2013). Boeing 787 in safety review. Reinforced Plastics, 57(2), 10. http://dx.doi.org/10.1016/S0034-3617(13)70043-2.

23 Schmuck, R. (2020). Global supply chain quality integration strategies and the case of the Boeing 787 Dreamliner development. Procedia Manufacturing, 54, 88-94. http://dx.doi.org/10.1016/j.promfg.2021.07.014.

24 Elsevier. (2014). Airbus readies first A350. Reinforced Plastics, 58(6), 6. http://dx.doi.org/10.1016/S0034-3617(14)70225-5.

25 Marsh, G. (2007). Airbus takes on Boeing with reinforced plastic A350 XWB. Reinforced Plastics, 51(11), 26-27. http://dx.doi.org/10.1016/S0034-3617(07)70383-1.

26 Van Ingen, J. W., Buitenhuis, A., Van Wijngaarden, M., & Simmons, F. (2010). Development of the Gulfstream G650 Induction Welded Thermoplastic Elevators and Rudder. In Society for the Advancement of Material and Process Engineering Conference. Seattle: Sampe North America.

27 Palanikumar, K., Ashok Gandhi, R., Raghunath, B. K., & Jayaseelan, V. (2019). Role of calcium carbonate(CaCO3) in improving wear resistance of polypropylene(PP) components used in automobiles. Materials Today: Proceedings, 16(Pt 2), 1363-1371. http://dx.doi.org/10.1016/j.matpr.2019.05.237.

28 Romero, P. E., Arribas-Barrios, J., Rodriguez-Alabanda, O., González-Merino, R., & Guerrero-Vaca, G. (2021). Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds. CIRP Journal of Manufacturing Science and Technology, 32, 396-404. http://dx.doi.org/10.1016/j.cirpj.2021.01.019.

29 Panaitescu, I., Koch, T., & Archodoulaki, V.-M. (2019). Accelerated aging of a glass fi ber polyurethane composite for automotive applications. Polymer Testing, 74, 245-256. http://dx.doi.org/10.1016/j.polymertesting.2019.01.008.

30 Sajan, S., & Selvaraj, D. P. (2021). A review on polymer matrix composite materials and their applications. Materials Today: Proceedings, 47(Pt 15), 5493-5498. http://dx.doi.org/10.1016/j.matpr.2021.08.034.

31 Bernardi, C., Toury, B., Salvia, M., Contraires, E., Dubreuil, F., Virelizier, F., Ourahmoune, R., Surowiec, B., & Benayoun, S. (2022). Effects of flaming on polypropylene long glass fiber composites for automotive bonding applications with polyurethane. International Journal of Adhesion and Adhesives, 113, 103033. http://dx.doi.org/10.1016/j.ijadhadh.2021.103033.

32 Kroll, L., Meyer, M., Nendel, W., & Schormair, M. (2019). Highly rigid assembled composite structures with continuous fiber-reinforced thermoplastics for automotive applications. Procedia Manufacturing, 33, 224-231. http://dx.doi.org/10.1016/j.promfg.2019.04.027.

33 Mallick, P. K., editor (2010). Materials, design and manufacturing for lightweight vehicles. USA: Woodhead Publishing Limited. http://dx.doi.org/10.1533/9781845697822.

34 Moran, K., Lake, P., & Dole, J. (2002). Using polyphenylene sulphide in high-performance pumps. World Pumps, 2002(434), 27-31. http://dx.doi.org/10.1016/S0262-1762(02)80264-4.

35 Pradeep, S. A., Iyer, R. K., Kazan, H., & Pilla, S. (2017). Automotive applications of plastics: past, present, and future. In Kutz, M. (Ed.), Applied plastics engineering handbook: processing, materials, and applications (pp. 651-673). USA: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-323-39040-8.00031-6

36 Begum, S. A., Rane, A. V., & Kanny, K. (2020). Applications of compatibilized polymer blends in automobile industry. In Ajitha, A.R. & Sabu Thomas, S. (Eds.), Compatibilization of polymer blends: micro and nano scale phase morphologies, interphase characterization and properties (pp. 563-593). UK: Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-816006-0.00020-7

37 Reddy, S. S. P., Suresh, R., Hanamantraygouda, M. B., & Shivakumar, B. P. (2021). Use of composite materials and hybrid composites in wind turbine blades. Materials Today: Proceedings, 46, 2827-2830. http://dx.doi.org/10.1016/j.matpr.2021.02.745.

38 Chen, X. (2019). Experimental observation of fatigue degradation in a composite wind turbine blade. Composite Structures, 212, 547-551. http://dx.doi.org/10.1016/j.compstruct.2019.01.051.

39 Keegan, M. H., Nash, D. H., & Stack, M. M. (2013). On erosion issues associated with the leading edge of wind turbine blades. Journal of Physics. D, Applied Physics, 46(38), 383001. http://dx.doi.org/10.1088/0022-3727/46/38/383001.

40 Elhadi Ibrahim, M., & Medraj, M. (2020). Water droplet erosion ofwind turbine blades: mechanics, testing, modeling and future perspectives. Materials (Basel), 13(1), 157. http://dx.doi.org/10.3390/ma13010157.

41 Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 271-277. http://dx.doi.org/10.1007/s40684-018-0028-3.

42 Marsh, G. (2010). Could thermoplastics be the answer for utility-scale wind turbine blades? Reinforced Plastics, 54(1), 31-35. http://dx.doi.org/10.1016/S0034-3617(10)70029-1.

43 Murray, R. E., Jenne, S., Snowberg, D., Berry, D., & Cousins, D. (2019). Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade. Renewable Energy, 131, 111-119. http://dx.doi.org/10.1016/j.renene.2018.07.032.

44 Joustra, J., Flipsen, B., & Balkenende, R. (2021). Structural reuse of high end composite products: A design case study on wind turbine blades. Resources, Conservation and Recycling, 167, 105393. http://dx.doi.org/10.1016/j.resconrec.2020.105393.

45 Mathijsen, D. (2013). Trailblazing thermoplastics for wind turbine blades. Reinforced Plastics, 57(4), 36-39. http://dx.doi.org/10.1016/S0034-3617(13)70126-7.

46 European Communities. (1999). Directiva 1999/31/CE. EUR-Lex. Official Journal of European Communities, UE.

47 Murray, R. E., Beach, R., Barnes, D., Snowberg, D., Berry, D., Rooney, S., Jenks, M., Gage, B., Boro, T., Wallen, S., & Hughes, S. (2021). Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade. Renewable Energy, 164, 1100-1107. http://dx.doi.org/10.1016/j.renene.2020.10.040.

48 Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, 47(Pt 1), 405-409. http://dx.doi.org/10.1016/j.matpr.2021.04.596.

49 Rojas, J. A., Santos, L. F. P., Costa, M. L., Ribeiro, B., & Botelho, E. C. (2017). Moisture and temperature influence on mechanical behavior of PPS/buckypapers carbon fiber laminates. Materials Research Express, 4(7), 075302. http://dx.doi.org/10.1088/2053-1591/aa797c.

50 Lohr, C., Beck, B., Henning, F., Weidenmann, K. A., & Elsner, P. (2019). Mechanical properties of foamed long glass fiber reinforced polyphenylene sulfide integral sandwich structures manufactured by direct thermoplastic foam injection molding. Composite Structures, 220, 371-385. http://dx.doi.org/10.1016/j.compstruct.2019.03.056.

51 Bruijn, T., & van Hattum, F. (2021). Rotorcraft access panel from recycled carbon PPS – The world’s first flying fully recycled thermoplastic composite application in aerospace. Reinforced Plastics, 65(3), 148-150. http://dx.doi.org/10.1016/j.repl.2020.08.003.

52 Zhao, L., Yu, Y., Huang, H., Yin, X., Peng, J., Sun, J., Huang, L., Tang, Y., & Wang, L. (2019). High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics. Composites. Part B, Engineering, 174, 106790. http://dx.doi.org/10.1016/j.compositesb.2019.05.001.

53 Araújo, I. G., P Santos, L. F., Marques, L. F. B., Reis, J. F., B de Souza, S. D., & Botelho, E. C. (2019). Influence of environmental effect on thermal and mechanical properties of welded PPS/carbon fiber laminates. Materials Research Express, 6(10), 105337. http://dx.doi.org/10.1088/2053-1591/ab3acd.

54 Ma, Z., Zhang, G., Yang, Q., Shi, X., Li, J., Zhang, H., & Qin, J. (2018). Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends. The Journal of Supercritical Fluids, 140, 116-128. http://dx.doi.org/10.1016/j.supflu.2018.06.010.

55 Lin, Y., Lang, F., Zeng, D., Yi-Lan, Y., Li, D., & Xiao, C. (2020). Effects of modified graphene on property optimization in thermal conductive composites based on PPS/PA6 blend. Soft Materials, 19(4), 457-467. http://dx.doi.org/10.1080/1539445X.2020.1856873.

56 Geng, P., Zhao, J., Wu, W., Wang, Y., Wang, B., Wang, S., & Li, G. (2018). Effect of thermal processing and heat treatment condition on 3D printing PPS properties. Polymers, 10(8), 875. http://dx.doi.org/10.3390/polym10080875. PMid:30960800.

57 El Magri, A., El Mabrouk, K., Vaudreuil, S., & Ebn Touhami, M. (2020). Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology. Journal of Applied Polymer Science, 138(1), 49625. http://dx.doi.org/10.1002/app.49625.

58 Yeole, P., Hassen, A. A., Kim, S., Lindahl, J., Kunc, V., Franc, A., & Vaidya, U. (2020). Mechanical characterization of high-temperature carbon fiber-polyphenylene sulfide composites for large area extrusion deposition additive manufacturing. Additive Manufacturing, 34, 101255. http://dx.doi.org/10.1016/j.addma.2020.101255.

59 Barbosa, L. C. M., de Souza, S. D. B., Botelho, E. C., Cândido, G. M., & Rezende, M. C. (2019). Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Engineering Failure Analysis, 102, 60-68. http://dx.doi.org/10.1016/j.engfailanal.2019.04.032.

60 Gaugel, S., Sripathy, P., Haeger, A., Meinhard, D., Bernthaler, T., Lissek, F., Kaufeld, M., Knoblauch, V., & Schneider, G. (2016). A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Composite Structures, 155, 173-183. http://dx.doi.org/10.1016/j.compstruct.2016.08.004.

61 Zhang, C., & Lu, M. (2018). A novel variable-dimensional vibration-assisted actuator for drilling CFRP. International Journal of Advanced Manufacturing Technology, 99(9), 3049-3063. http://dx.doi.org/10.1007/s00170-018-2680-8.

62 Geng, D., Liu, Y., Shao, Z., Lu, Z., Cai, J., Li, X., Jiang, X., & Zhang, D. (2019). Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 216, 168-186. http://dx.doi.org/10.1016/j.compstruct.2019.02.099.

63 Wan, M., Li, S.-E., Yuan, H., & Zhang, W.-H. (2019). Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): A review. Composites. Part A, Applied Science and Manufacturing, 117, 34-55. http://dx.doi.org/10.1016/j.compositesa.2018.11.003.

64 Batista, M. F., Basso, I., Toti, F. A., Rodrigues, A. R., & Tarpani, J. R. (2020). Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers. Composite Structures, 251, 112625. http://dx.doi.org/10.1016/j.compstruct.2020.112625.

65 Korugic-Karasz, L., & Farugia, J. (2002). Polyphenylene sulphide manufacturing in electronic industry and thermal relaxation of stresses. Thin Solid Films, 417(1-2), 155-161. http://dx.doi.org/10.1016/S0040-6090(02)00587-4.

66 Lee, E.-S. (2001). Precision machining of glass fibre reinforced plastics with respect to tool characteristics. International Journal of Advanced Manufacturing Technology, 17(11), 791-798. http://dx.doi.org/10.1007/s001700170105.

67 Amin, M., Yuan, S., Israr, A., Zhen, L., & Qi, W. (2018). Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers. International Journal of Advanced Manufacturing Technology, 94(9), 3863-3874. http://dx.doi.org/10.1007/s00170-017-1087-2.

68 Kubher, S., Gururaja, S., & Zitoune, R. (2021). In-situ cutting temperature and machining force measurements during conventional drilling of carbon fiber polymer composite laminates. Journal of Composite Materials, 55(20), 2807-2822. http://dx.doi.org/10.1177/0021998321998070.

69 Wang, Q., & Jia, X. (2021). Analytical study and experimental investigation on delamination in drilling of CFRP laminates using twist drills. Thin-walled Structures, 165, 107983. http://dx.doi.org/10.1016/j.tws.2021.107983.

70 Panchagnula, K. K., & Palaniyandi, K. (2018). Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review. Journal of Materials Research and Technology, 7(2), 180-189. http://dx.doi.org/10.1016/j.jmrt.2017.06.003.

71 Cepero-Mejías, F., Curiel-Sosa, J. L., Blázquez, A., Yu, T. T., Kerrigan, K. & Phadnis, V. A. (2020). Review of recent developments and induced damage assessment in the modelling of the machining of long fibre reinforced polymer composites. Composite Structures, 240, 112006. http://dx.doi.org/10.1016/j.compstruct.2020.112006.

72 Iliescu, D., Gehin, D., Gutierrez, M. E., & Girot, F. (2010). Modeling and tool wear in drilling of CFRP. International Journal of Machine Tools & Manufacture, 50(2), 204-213. http://dx.doi.org/10.1016/j.ijmachtools.2009.10.004.

73 Sorrentino, L., Turchetta, S., & Bellini, C. (2017). In process monitoring of cutting temperature during the drilling of FRP laminate. Composite Structures, 168, 549-561. http://dx.doi.org/10.1016/j.compstruct.2017.02.079.

74 Nomura, M., Suzuki, K., Wu, Y. B. & Fujimoto, M. (2014). Small hole drilling for polyphenylene sulfide(PPS) – Influence of depth-of-cut on burr formation. Advanced Materials Research, 1017, 355-360. https://doi.org/10.4028/www.scientific.net/AMR.1017.355.

75 Basso, I., Batista, M. F., Jasinevicius, R. G., Rubio, J. C. C. & Rodrigues, A. R. (2019). Micro drilling of carbon fiber reinforced polymer. Composite Structures Journal, 228, 111312. http://dx.doi.org/10.1016/j.compstruct.2019.111312.

76 Biermann, D., & Feldhoff, M. (2012). Abrasive points for drill grinding of carbon fibre reinforced thermoset. CIRP Annals, 61(1), 299-302. http://dx.doi.org/10.1016/j.cirp.2012.03.096.

77 Khashaba, U. A. (2013). Drilling of polymer matrix composites: A review. Journal of Composite Materials, 47(15), 1817-1832. http://dx.doi.org/10.1177/0021998312451609.

78 Iskandar, Y., Tendolkar, A., Attia, M. H., Hendrick, P., Damir, A., & Diakodimitris, C. (2014). Flow visualization and characterization for optimized MQL machining of composites. CIRP Annals, 63(1), 77-80. http://dx.doi.org/10.1016/j.cirp.2014.03.078.

79 Batista, N. L., Olivier, P., Bernhart, G., Rezende, M. C., & Botelho, E. C. (2016). Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Materials Research, 19(1), 195-201. http://dx.doi.org/10.1590/1980-5373-MR-2015-0453.

80 Costa, G. G., Botelho, E. C., Rezende, M. C., & Costa, M. L. (2008). Thermal cycles evaluation during the compression forming of parts made of polyphenylsulphide reinforced with continuous carbon fiber. Polímeros: Ciência e Tecnologia, 18(1), 81-86. http://dx.doi.org/10.1590/S0104-14282008000100016.

81 Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., & Verpoest, I. (2020). Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices. Advanced Composite Materials, 29(1), 101-113. http://dx.doi.org/10.1080/09243046.2019.1651083.

82 Furushima, Y., Nakada, M., Yoshida, Y., & Okada, K. (2018). Crystallization/melting kinetics and morphological analysis of polyphenylene sulfide. Macromolecular Chemistry and Physics, 219(2), 1700481. http://dx.doi.org/10.1002/macp.201700481.

83 Batista, N. L., Anagnostopoulos, K., Botelho, E. C., & Kim, H. (2021). Influence of crystallinity on interlaminar fracture toughness and impact properties of polyphenylene sulfide/carbon fiber laminates. Engineering Failure Analysis, 119, 104976. http://dx.doi.org/10.1016/j.engfailanal.2020.104976.

84 Chukov, D., Nematulloev, S., Zadorozhnyy, M., Tcherdyntsev, V., Stepashkin, A., & Zherebtsov, D. (2019). Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites. Polymers, 11(4), 684. http://dx.doi.org/10.3390/polym11040684. PMid:30991729.

85 Wang, W., Wu, X., Ding, C., Huang, X., Ye, N., Yu, Q., & Mai, K. (2021). Thermal aging performance of glass fiber/polyphenylene sulfide composites in high temperature. Journal of Applied Polymer Science, 138(37), 50948. http://dx.doi.org/10.1002/app.50948.

86 Zuo, P., Tcharkhtchi, A., Shirinbayan, M., Fitoussi, J., & Bakir, F. (2020). Effect of thermal aging on crystallization behaviors and dynamic mechanical properties of glass fiber reinforced polyphenylene sulfide (PPS/GF) composites. Journal of Polymer Research, 27(3), 77. http://dx.doi.org/10.1007/s10965-020-02051-2.

87 Batista, N. L., Rezende, M. C., & Botelho, E. C. (2018). Effect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiation. Polymer Degradation & Stability, 153, 255-261. http://dx.doi.org/10.1016/j.polymdegradstab.2018.03.008.

88 American Society for Testing and Materials – ASTM. (2016). ASTM G154-00a: Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. USA: ASTM International. http://dx.doi.org/10.1520/G0154-16.

89 Batista, N. L., Faria, M. C. M., Iha, K., Oliveira, P. C., & Botelho, E. C. (2015). Influence of water immersion and ultraviolet weathering on mechanical and viscoelastic properties of polyphenylene sulfide-carbon fiber composites. Journal of Thermoplastic Composite Materials, 28(3), 340-356. http://dx.doi.org/10.1177/0892705713484747.

90 Faria, M. C. M., Oliveira, P. C., Ribeiro, B., Martet, J. M. F., & Botelho, E. C. (2017). Study of the influence on higrothermal conditioning on viscoelastic properties of thermoplastic composites. Polímeros: Ciência e Tecnologia, 27(spe), 77-83. http://dx.doi.org/10.1590/0104-1428.2281.

91 European Communities. (2000). Directiva 2000/53/CE. EUR-Lex. Official Journal of European Communities, UE.

92 European Communities. (2008). Directiva 2008/C 224/01. EUR-Lex. Official Journal of European Communities, UE.

93 Bernatas, R., Dagreou, S., Despax-Ferreres, A., & Barasinski, A. (2021). Recycling of fiber reinforced composites with a focus on thermoplastic composites. Cleaner Engineering and Technology, 5, 100272. http://dx.doi.org/10.1016/j.clet.2021.100272.

94 Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. http://dx.doi.org/10.3390/recycling2040024.

95 Holmes, M. (2018). Recycled carbon fiber composites become a reality. Reinforced Plastics, 62(3), 148-153. http://dx.doi.org/10.1016/j.repl.2017.11.012.

96 Pakdel, E., Kashi, S., Varley, R., & Wang, X. (2022). Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. Resources, Conservation and Recycling, 166, 105340. http://dx.doi.org/10.1016/j.resconrec.2020.105340.

97 Meng, F., McKechnie, J., & Pickering, S. J. (2018). An assessment of financial viability of recycled carbon fibre in automotive applications. Composites. Part A, Applied Science and Manufacturing, 109, 207-220. http://dx.doi.org/10.1016/j.compositesa.2018.03.011.

98 Perng, L. H. (2000). Thermal decomposition characteristics of poly(phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques. Polymer Degradation & Stability, 69(3), 323-332. http://dx.doi.org/10.1016/S0141-3910(00)00077-X.

99 Vincent, G. A., Bruijn, T. A., Wijskamp, S., van Drongelen, M. & Akkerman, R. (2020). Process- and material-induced heterogeneities in recycled thermoplastic composites. Journal of Thermoplastic Composite Materials, 1-22. http://dx.doi.org/10.1177/0892705720979347.

100 Wang, H., Zhu, Z., Yuan, J., Wang, H., Wang, Z., Yang, F., Zhan, J., & Wang, L. (2021). A new recycling strategy for preparing flame retardants from polyphenylene sulfide waste textiles. Composites Communications, 27, 100852. http://dx.doi.org/10.1016/j.coco.2021.100852.

101 Li, J., Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., & Kim, D. H. (2020). Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. The Science of the total environment, 720, 137616. http://dx.doi.org/10.1016/j.scitotenv.2020.137616. PMid:32146401.
 

62c5d1e3a953952d4b7d78f3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections