Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Torsion modulus with CaCO3 fillers in unsaturated polyester resin - mechanical spectroscopy

Carlos Alberto Fonzar Pintão; Airton Baggio; Lucas Pereira Piedade; Luiz Eduardo de Angelo Sanchez; Gilberto de Magalhães Bento Gonçalves

Downloads: 0
Views: 52


This work presents an alternative to studying and determining the torsion modulus, G, in composites. For this purpose, we use a measuring system with a rotation motion sensor coupled with a torsion pendulum that allows for determining the angular position as a function of the time. Then, through an equation derived from mechanical spectroscopy studies that permits the calculation of G’s value, the experiments focus on samples of different quantities of calcium carbonate (CaCO3) in unsaturated polyester resins. The results show that CaCO3 (33.33%W) fillers increase G’s value by 88% compared with unsaturated resin (100%W). Furthermore, there is a density increase of approximately 21% with the addition of CaCO3, considering the same two samples, which makes these composites the most massive. The relationship between G and composite density shows that it is possible to change the amount of CaCO3 to increase torsion resistance values in a controlled way.



calcium carbonate, mechanical spectroscopy, polyester resin, torsion modulus


1 Costa, A. P., Botelho, E. C., Costa, M. L., Narita, N. E., & Tarpani, J. R. (2012). A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, 4(3), 255-265. http://dx.doi.org/10.5028/jatm.2012.040303912.

2 Bochenek, K., & Basista, M. (2015). Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Progress in Aerospace Sciences, 79, 136-146. http://dx.doi.org/10.1016/j.paerosci.2015.09.003.

3 Delogu, M., Zanchi, L., Maltese, S., Bonoli, A., & Pierini, M. (2016). Environmental and economic life cycle assessment of a lightweight solution for an automotive component: A comparison between talc-filled and hollow glass microspheres-reinforced polymer composites. Journal of Cleaner Production, 139, 548-560. http://dx.doi.org/10.1016/j.jclepro.2016.08.079.

4 Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. (2001). Review of advanced composite structures for naval ships and submarines. Composite Structures, 53(1), 21-42. http://dx.doi.org/10.1016/S0263-8223(00)00175-6.

5 Francklin, H. M., Motta, L. A. C., Cunha, J., Santos, A. C., & Landim, M. V. (2019). Study of epoxy composites and sisal fibers as reinforcement of reinforced concrete structure. IBRACON Structures and Materials Journal, 12(2), 255-287. http://dx.doi.org/10.1590/s1983-41952019000200004.

6 Araque, L. M., Morais, A. C. L., Alves, T. S., Azevedo, J. B., Carvalho, L. H., & Barbosa, R. (2019). Preparation and characterization of poly(hydroxybutyrate) and hollow glass microspheres composite films: Morphological, thermal, and mechanical properties. Journal of Materials Research and Technology, 8(1), 935-943. http://dx.doi.org/10.1016/j.jmrt.2018.07.005.

7 Yang, H., Jiang, Y., Liu, H., Xie, D., Wan, C., Pan, H., & Jiang, S. (2018). Mechanical, thermal, and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. Journal of Colloid and Interface Science, 530, 163-170. http://dx.doi.org/10.1016/j.jcis.2018.06.075. PMid:29982007.

8 Shrivastava, P., Dalai, S., Sudera, P., Vijayalakshmi, S., & Sharma, P. (2014). Hollow glass microspheres as potential adjunct with orthopaedic metal implants. Microelectronic Engineering, 126, 103-106. http://dx.doi.org/10.1016/j.mee.2014.06.031.

9 Kaur, M., & Singh, K. (2019). Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering C, 102, 844-862. http://dx.doi.org/10.1016/j.msec.2019.04.064. PMid:31147056.

10 Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites. Part B, Engineering, 42(4), 856-873. http://dx.doi.org/10.1016/j.compositesb.2011.01.010.

11 Dhand, V., Mittal, G., Rhee, K. Y., Park, S.-J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites. Part B, Engineering, 73, 166-180. http://dx.doi.org/10.1016/j.compositesb.2014.12.011.

12 Sarikaya, E., Çallioğlu, H., & Demirel, H. (2019). Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Composites. Part B, Engineering, 167, 461-466. http://dx.doi.org/10.1016/j.compositesb.2019.03.020.

13 Yang, H., Wang, X., Yu, B., Yuan, H., Song, L., Hu, Y., Yuen, R. K. K., & Yeoh, G. H. (2013). A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. Journal of Applied Polymer Science, 128(5), 2720-2728. http://dx.doi.org/10.1002/app.38399.

14 Kumar, N., Mireja, S., Khandelwal, V., Arun, B., & Manik, G. (2017). Lightweight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Composites. Part B, Engineering, 109, 277-285. http://dx.doi.org/10.1016/j.compositesb.2016.10.052.

15 Bartczak, Z., Argon, A. S., Cohen, R. E., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 40(9), 2347-2365. http://dx.doi.org/10.1016/S0032-3861(98)00444-3.

16 Sun, S., Li, C., Zhang, L., Du, H. L., & Burnell-Gray, J. S. (2006). Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. European Polymer Journal, 42(7), 1643-1652. http://dx.doi.org/10.1016/j.eurpolymj.2006.01.012.

17 Zheng, J., Ozisik, R., & Siegel, R. W. (2005). Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites. Polymer, 46(24), 10873-10882. http://dx.doi.org/10.1016/j.polymer.2005.08.082.

18 Zuiderduin, W. C. J., Westzaan, C., Huétink, J., & Gaymans, R. J. (2003). Toughening of polypropylene with calcium carbonate particles. Polymer, 44(1), 261-275. http://dx.doi.org/10.1016/S0032-3861(02)00769-3.

19 He, P., Gao, Y., Lian, J., Wang, L., Qian, D., Zhao, J., Wang, W., Schulz, M. J., Zhou, X. P., & Shi, D. (2006). Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites. Composites. Part A, Applied Science and Manufacturing, 37(9), 1270-1275. http://dx.doi.org/10.1016/j.compositesa.2005.08.008.

20 Morales, E., & White, J. R. (1988). Residual stresses and molecular orientation in particulate-filled polypropylene. Journal of Materials Science, 23(10), 3612-3622. http://dx.doi.org/10.1007/BF00540503.

21 Herrera-Ramírez, L. C., Cano, M., & Guzman de Villoria, R. (2017). Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber–polymer composites. Composites Science and Technology, 151, 211-218. http://dx.doi.org/10.1016/j.compscitech.2017.08.020.

22 Zhang, Q.-X., Yu, Z.-Z., Xie, X. L., & Mai, Y.-W. (2004). Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer, 45(17), 5985-5994. http://dx.doi.org/10.1016/j.polymer.2004.06.044.

23 Xie, X.-L., Liu, Q.-X., Li, R. K.-Y., Zhou, X.-P., Zhang, Q.-X., Yu, Z.-Z., & Mai, Y.-W. (2004). Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer, 45(19), 6665-6673. http://dx.doi.org/10.1016/j.polymer.2004.07.045.

24 Truell, R., Elbaum, C., & Chic, B. B. (1969). Ultrasonic methods in solid-state physics. New York: Academic Press.

25 Nowick, A. S., & Berry, B. S., editors (1972). Anelastic relaxation in crystalline solids. New York: Academic Press.

26 Pintão, C. A. F. (2014). Measurement of the rotational inertia of bodies by using mechanical spectroscopy. Journal of Mechanical Science and Technology, 28(10), 4011-4020. http://dx.doi.org/10.1007/s12206-014-0914-8.

27 Timoshenko, S. P., & Gere, J. M. (1972). Mechanics of materials. New York: Van Nostrand Reinhold Co.

28 Pintão, C. A. F., Correa, D. R. N., & Grandini, C. R. (2017). Torsion modulus using the technique of mechanical spectroscopy in biomaterials. Journal of Mechanical Science and Technology, 31(5), 2203-2211. http://dx.doi.org/10.1007/s12206-017-0416-6.

29 Majumdar, P., Singh, S. B., & Chakraborty, M. (2008). Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-A comparative study. Materials Science and Engineering A, 489(1-2), 419-425. http://dx.doi.org/10.1016/j.msea.2007.12.029.

30 Piedade, L. P., Pintão, C. A. F., Foschini, C. R., Silva, M. R., & Azevedo, N. F., No. (2020). Alternative dynamic torsion test to evaluate the elastic modulus of polymers. Materials Research Express, 7(9), 095306. http://dx.doi.org/10.1088/2053-1591/abb560.

31 Pintão, C. A. F., Souza, M. P., Fo., Grandini, C. R., & Hessel, R. (2004). Experimental study of the conventional equation to determine a plate’s moment of inertia. European Journal of Physics, 25(3), 409-417. http://dx.doi.org/10.1088/0143-0807/25/3/008.

32 Amrani, D. (2006). Computerized rotational system to study the moment of inertia of different objects. European Journal of Physics, 27(5), 1063-1069. http://dx.doi.org/10.1088/0143-0807/27/5/005.

33 Dedavid, B. A., Gomes, C. I., & Machado, G. (2007). Microscopia eletrônica de varredura : aplicações e preparação de amostras : materiais poliméricos, metálicos e semicondutores. Porto Alegre: EDIPUCRS.

34 Hibbeler, R. C. (2010). Resistência dos materiais. São Paulo: Pearson Prentice Hal.

35 Pintão, C. A. F., Correa, D. R. N., & Grandini, C. R. (2019). Torsion modulus as a tool to evaluate the role of thermo-mechanical treatment and composition of dental Ti-Zr alloys. Journal of Materials Research and Technology, 8(5), 4631-4641. http://dx.doi.org/10.1016/j.jmrt.2019.08.007.

36 Alarcon, R. T., Gaglieri, C., Santos, G. C., Roldao, J. C., Magdalena, A. G., Silva-Filho, L. C., & Bannach, G. (2021). A deep investigation into the thermal degradation of urethane dimethacrylate polymer. Journal of Thermal Analysis and Calorimetry, 147(4), 3083-3097. http://dx.doi.org/10.1007/s10973-021-10610-y.

6356f021a9539533e12bca43 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections